首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 证明A=E+B可逆,并求A-1.
设 证明A=E+B可逆,并求A-1.
admin
2018-08-22
55
问题
设
证明A=E+B可逆,并求A
-1
.
选项
答案
E和任意矩阵可交换(和B可交换)且B
4
=O,故 (E+B)(E一B+B
2
一B
3
)=E一B
4
=E, 故A=E+B可逆,且 A
-1
=(E+B)
-1
=E—B+B
2
一B
3
. 又 [*] 即得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HWj4777K
0
考研数学二
相关试题推荐
设b>a>e,证明:ab>ba.
证明:函数f(x)在x0处可导的充要条件是存在一个关于△x的线性函数L(△x)=α△x,
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f(f(x))至少在两点处取得最小值.
设有3阶实对称矩阵A满足A3-6A2+11A一6E=0,且|A|=6.写出用正交变换将二次型f=xT(A+E)x化成的标准形(不需求出所用的正交变换);
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.求A的全部特征值;
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为求矩阵A;
随机试题
休克患者补液1500ml后,动态监测中心静脉压值为25cmH2O,表示
患者男性,25岁,2个月前出现左下腹痛,腹泻,排黏液脓血便,每日4~6次,排便后腹痛缓解。四肢关节疼痛。查体:腹软,腹部未及包块,左下腹压痛,可能的诊断是
合同义务转移的效力包括()。
稳定性与适应性相结合原则是指()及其形式既要有相对的稳定性,又要与环境相适应,随环境的重大变化而调整。
下列关于价格策略的说法不正确的有()。
四班三运转轮休制的循环周期不可能为()。
所谓信息系统集成是指()。
“卡路里”是热量单位,物理学上规定,(),简称“卡”,在汉语中,把“千卡”称为“大卡”。
学校食堂里,肉类有鸡肉、猪肉、牛肉、羊肉、鱼肉;蛋类有鸡蛋、咸鸭蛋、鹅蛋、松花蛋;蔬菜有白菜、菠菜、花菜。小华每天中午都去食堂吃饭,都点三个不同的菜,其中至少包括肉类、蛋类、蔬菜中的两种,问至少经过多少天,可以确定小华有两天点的菜完全相同?
事务一旦提交,对数据库的修改就是永久的是指()。
最新回复
(
0
)