首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若对于x>0的任意空间内的分片光滑有向闭曲面∑,都有其中函数f(x)在(0,+∞)内具有连续的一阶导数,且求函数f(x)的表达式.
若对于x>0的任意空间内的分片光滑有向闭曲面∑,都有其中函数f(x)在(0,+∞)内具有连续的一阶导数,且求函数f(x)的表达式.
admin
2019-02-26
47
问题
若对于x>0的任意空间内的分片光滑有向闭曲面∑,都有
其中函数f(x)在(0,+∞)内具有连续的一阶导数,且
求函数f(x)的表达式.
选项
答案
因为曲面∑是封闭的,由高斯公式,有 [*] 由已知条件函数f(x)在(0,+∞)内具有连续的一阶导数,得三重积分的被积函数是连续的.又由于空间区域Ω的任意性,从而当x>0时,有 [f(x)+xf(x)]一xf’(x)一e
2x
=0, [*]
解析
本题主要考查高斯公式的逆问题.
本题的关键问题在于三重积分中的被积函数为0.
转载请注明原文地址:https://www.kaotiyun.com/show/HT04777K
0
考研数学一
相关试题推荐
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xm与Y1,Y2,…,Yn是分别来自总体X与Y的两个相互独立的简单随机样本,统计量Y==()
设A,B是两个随机事件,且0<P(A)<1,P(B)>0,P(B|)=P(B|A),则必有
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解;则秩(A
设α1,α2,…,αn是n个n维的线性无关向量组,an+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明:α1,α2,…,αn,αn+1中任意n个向量线性无关。
设A,B,C,D都是n阶矩阵,其中A可逆,构造两个2n阶矩阵:(Ⅰ)求HG;(Ⅱ)证明|H|=|A||B-DA-1C|。
(2005年)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
在椭球面χ2+2y2+z2=1上求一点使函数f(χ,y,z)=χ2+y2+z2在该点沿方向l=(1.-1.0)的方向导数最大.
随机试题
癞皮病是由于体内长期缺乏________而引起的。
A.x线片示:骨端膨胀性溶骨性破坏B.X线片示:短骨膨胀,有蜂窝状骨吸收区夹杂钙化斑块C.X线片示:长骨干骺端骨破坏和日光射线现象,可有Codman三角D.X线片示:骨膜板层状或“葱皮状”反应性骨形成和骨破坏E.X
诊断羊水栓塞的主要病理依据是
女,32岁,婚后3年未孕,有轻度痛经史,腹腔镜检查发现左侧卵巢子宫内膜异位囊肿,直径4cm女,30岁,进行性痛经5年,服用止痛药能缓解,婚后3年不孕,月经正常。妇科检查:宫颈轻度糜烂,宫体后位,正常大,活动受限,于子宫后方可及散在结节,触痛(+),附件
工程项目组织机构形式中,()的主要优点是集中领导、职责清楚,有利于提高管理效率。
送检泡沫液主要是对其发泡性能和灭火性能进行检测,下面不属于检测内容的是()。
开放式询问常用的是()。
野兽派
【B1】【B12】
THECLIMATEOFJAPAN(1)Atthemostgenerallevel,twomajorclimaticforcesdetermineJapan’sweather.Prevailingwesterly
最新回复
(
0
)