首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断矩阵A=是否可相似对角化。
判断矩阵A=是否可相似对角化。
admin
2018-01-26
48
问题
判断矩阵A=
是否可相似对角化。
选项
答案
由|λE-A|=(λ-1)
2
(λ+2)=0可得到矩阵A的特征值是λ
1
=λ
2
=1,λ
3
=-2。 由于A-E=[*],R(A-E)=2,于是矩阵A的二重特征值1有且只有一个线性无关的特征向量,故A不可相似对角化。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/YSr4777K
0
考研数学一
相关试题推荐
假设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是来自X的简单随机样本,试求:(1)端点θ的最大似然估计量;(2)端点θ的0.95置信区间.
求微分方程的通解,并求满足y(1)=0的特解.
设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数g(x)=
设f(x)的导数在x=a处连续,又=一1,则
设Ω是由曲面及z=1所围成的区域f(x,y,z)连续,则
设二元函数f(x,y)在单位圆区域x2+y2≤1上有连续的偏导数,且在单位圆的边界曲线上取值为零,f(0,0)=1.求极限,其中区域。为圆环域ε2≤x2+y2≤1.
(1998年)确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj为某二元函数u(x,y)的梯度,并求u(x,y)。
(2017年)设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,证明:(I)方程f(x)=0在区间(0,1)内至少存在一个实根;(11)方程f(x)f(x)+[f′(x)]2=0在区间(0,1)内至少存在两个不同的实根。
(2003年)设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则f(x)有
(2014年)求极限
随机试题
具有疏风解表、泻热通便功用的方剂是
一患者面颊大面积损伤,创口感染,以下处理措施错误的是
患者,24岁。口腔卫生情况不佳,患者左下第一恒磨牙有牙周一牙髓联合病变,疼痛剧烈,但患牙无松动,为了消除病痛,恢复健康。上述治疗措施属于
影响肾排H+的主要因素是
对于银行和其他债权人而言,项目融资的安全性来自于()。
根据国家相关规定,结合公路工程的特点,下列关于公路工程施工总承包企业资质的划分,正确的是()。
有结构问题的解决过程与无结构问题的解决过程相同,但各自的解决特点不同。
陈水扁的故事再跌宕起伏,也是台湾政治史上即将过去的一页。可是民进党在极端挺扁势力的绑架下,不得不继续和扁走下去。民进党主席蔡英文发表声明,要求释放陈水扁。虽然支持陈水扁的民意只有不到15%,但这15%却是政治捐款、政治动员的主要资源和地方选举的主要票仓,足
中国经济近些年来出现了明显不同于前30年的特征,经济增速持续下滑,自2010年至2012年经济增速已经连续11个季度下滑,2012年和2013年的GDP年增速连续两年低于8%。与此同时。我国商业银行的贷款利率、存款利率和同业拆借利率却均维持在高水平。国家的
StudyActivitiesinUniversityInordertohelpcollegeanduniversitystudentsintheprocessoflearning,fourkeystudyac
最新回复
(
0
)