首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是 ( )
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是 ( )
admin
2014-04-23
71
问题
已知ξ
1
,ξ
2
,…,ξ
r
(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是 ( )
选项
A、α
1
=一ξ
2
一ξ
3
一…一ξ
r
,α
2
=ξ
1
一ξ
3
一ξ
4
一…一ξ
r
,α
3
=ξ
1
+ξ
2
一ξ
4
一…一ξ
r
,…,α
r
=ξ
1
+ξ
2
+…+ξ
r-1
.
B、β
1
=一ξ
2
+ξ
3
+…+ξ
r
,β2=ξ
1
+ξ
3
+ξ
4
+…+ξ
r
,β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,…,β
r
=ξ
1
+ξ
2
+…+ξ
r-1
.
C、ξ
1
,ξ
2
,…,ξ
r
的一个等价向量组.
D、ξ
1
,ξ
2
,…,ξ
r
的一个等秩向量组.
答案
B
解析
β
1
=ξ
2
+ξ
3
+…+ξ
r
.β
2
=ξ
1
+ξ
3
+…+ξ
r
.β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,β
r
=ξ
1
+ξ
2
+…+}ξ
r-1
是Ax=0的基础解系.因①由解的性质知,Aβ
i
=A(ξ
1
+ξ
2
+…+ξ
i-1
+ξ
i+1
+…+ξ
r
)=0,故β
i
均是Ax=0的解向量.
②向量个数为r=n一r(A),与原基础解系向量个数一样多.
③因
由ξ
1
,ξ
2
,…,ξ
r
线性无关及r≥3,有
故β
1
,β
2
,…,β
r
线性无关,则是Ax=0的基础解系,故应选B.另外对A,当r=3时,α
1
=一ξ
2
一ξ
3
,α
2
=ξ
1
一ξ
3
,α
3
=ξ
1
+ξ
2
.因α
1
一α
1
+α
3
=一ξ
2
一ξ
3
一(ξ
1
一ξ
3
)+ξ
1
+ξ
2
=0,α
1
,α
2
,α
3
线性相关,故A中α
1
,α
2
,…,α
r
,不是Ax=0的基础解系.对C,与ξ
1
,ξ
2
,…,ξ
r
等价的向量组,向量组个数可以超过r个(即与ξ
1
,ξ
2
,…,ξ
r
,等价的向量组可能线性相关).对D,与ξ
1
,ξ
2
,…,ξ
r
等秩向量组可能不是Ax=0的解向量,且个数也可以超过r,故A,C.D均不成寺.
转载请注明原文地址:https://www.kaotiyun.com/show/GA54777K
0
考研数学一
相关试题推荐
举例说明下列各命题是错误的:若向量组a1,a2,…,am,是线性相关的,则a1可由a2,a3,…,am线性表示.
设v+z=f(x+y,y+z),且z=z(x,y)由ex+y+z=x3y2z确定,其中f连续可偏导,求dv.
[*]
设f(u,v)二阶连续可偏导,且z=,则().
设y=y(x)由确定,且y|t=0=1,y’|t=0=-1,则曲线y=y(x)在x=0对应点处的曲率为______________.
求曲线与其渐近线之间的面积.
已知随机变量X的概率密度为f(x)=,求(1)常数a,b的值;(2)。
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Yi
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求(X,Y)的密度函数;
设f(x)=u(x)+v(x),g(x)=u(x)-v(x),并设都不存在,下列论断正确的是()
随机试题
下列关于胆盐肝肠循环的叙述,正确的是
下列不属于超声雾化吸入法目的一项是
根据《民事诉讼法》及相关司法解释的规定,下列哪些对妨害民事诉讼行为采取强制措施的说法是正确的?()
设置防烟分区时,除了不应跨越防火分区外,还应满足()。
国内某铜矿企业与智利某铜矿企业签订价值为3000万美元的铜精矿进口合同,规定付款期为3个月。同时,该铜矿企业向欧洲出口总价1250万欧元的铜材,付款期均为3个月。那么,该铜矿企业可在CME通过()进行套期保值,对冲外汇风险。
(2016·河北)教育的生物起源论认为,教育产生于儿童对成人的无意识模仿。()
党的作风建设的核心问题是()。
总经理:快速而准确地处理订单是一项关键商务。为了增加利润,我们应当用电子方式而不是继续用人工方式处理客户订单,因为这样订单可以直接到达公司相关业务部门。董事长:如果用电子方式处理订单,我们一定会赔钱。因为大多数客户喜欢通过与人打交道来处理订单。如果转用电
我们要坚定不移地坚持马克思列宁主义、毛泽东思想、邓小平理论和“三个代表”重要思想,一切从实际出发,以我国改革开放和现代化建设的实际问题为中心,不断丰富和发展马克思主义,着眼于
说明:请以李军的名义写一则寻物启事。时间:3月12日内容:今天中午在餐厅吃饭时,将书包忘在那里。书包为棕色,里面有一本课本、一个笔记本和一个钱包。拾到者请致电67689903,将当面酬谢。
最新回复
(
0
)