首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
admin
2017-07-26
72
问题
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α
1
=(a一1,1,1)
T
,α
2
=(4,一a,1)
T
,α
3
=(a,2,6)
T
,A
*
是A的伴随矩阵,试求齐次方程组(A
*
+E)x=0的基础解系。
选项
答案
因为实对称矩阵不同特征值的特征向量相互正交,故 [*] 由|A|=一2,知A
*
的特征值是一2,一1,2.那么A
*
+E的特征值是一1,0,3. 又因A,A
*
,A
*
+E有相同的特征向量.于是 (A
*
+E) α
2
=0α
2
=0. 所以α
2
=(4,一1,1)
T
是齐次方程组(A
*
+E)x=0的基础解系.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FyH4777K
0
考研数学三
相关试题推荐
下列矩阵中两两相似的是
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,当α=3时,证明α1,α2,α3,α4可表示任一个4维列向量.
求微分方程(x一2xy—y2)y’+y2=0,y(0)=1的特解.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
证明下列命题:设f’(x0)=0,f’’(x0)>0,则存在δ>0使得y=f(x)在(x0—δ,x0]单调减少,在[x,x0δ)单调增加;
微分方程2x2y’=(x+y)2满足定解条件y(1)=1的特解是__________.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)Tα3=(0,1,-1,0)T,β=(3,10,6,4)T,问:(I)a,b取何值时,β不能由α1,α2,α3线性表示?(Ⅱ)a,b取何值时,卢可由α1,α2,α3线性表示?并写出此表示式.
随机试题
这个标志是何含义?
A.肺热津伤B.湿热浸淫C.脾胃虚弱D.肝肾亏损发热多汗,热退后突然出现痿症,伴心烦口渴,小便短黄,舌红苔黄,脉细数者证属
按照最高人民法院《关于审理建设工程施工合同纠纷案件适用法律问题的解释》(法释[2004]14号)的规定,若当事人对垫资没有约定的,按照()处理。
A公司2017年4月3日委托证券公司从股票交易所购入甲公司股票100000股,每股购买价款为6.8元(其中包括已宣告但尚未发放的现金股利0.3元/股)。另支付交易费用3400元,A公司将其划分为交易性金融资产核算。5月8日,A公司收到购买价款中包含的现金股
下列各项中,属于票据基本当事人的有()。
不属于世界文学史上四大吝啬鬼形象的是()。
下列选项中能够从上述资料推出的是()。
LastSeptember,theU.S.governmentannouncedthatitsbirthratefellto"anotherrecordlow".Morallyspeaking,there’snothing
Howmenfirstlearnedtoinventwordsisunknown;inotherwords,theoriginoflanguageisamystery.Allwereallyknowistha
Janewishesthatshe______foreigntradeinsteadofliteraturewhenshewasincollege.
最新回复
(
0
)