首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T, 当α=3时,证明α1,α2,α3,α4可表示任一个4维列向量.
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T, 当α=3时,证明α1,α2,α3,α4可表示任一个4维列向量.
admin
2014-02-06
44
问题
已知α
1
=(1,3,5,一1)
T
,α
2
=(2,7,α,4)
T
,α
3
=(5,17,一1,7)
T
,
当α=3时,证明α
1
,α
2
,α
3
,α
4
可表示任一个4维列向量.
选项
答案
由于[*]所以x
1
α
1
+x
2
α
2
+x
4
α
3
+X4α
4
=α恒有解,即任一4维列向量必可由α
1
,α
2
,α
3
,α
4
线性表出.或者由(I)知α=3时,α
1
,α
2
,α
3
必线性无关,那么:若k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0,用α
4
T
左乘上式两端并利用α
4
T
α
1
=α
4
T
α
2
=α
4
T
α
3
=0,有k
4
α
4
T
α
4
=0,又α
4
≠0,故必有k
4
=0.于是k
1
α
1
+k
2
α
2
+k
3
α
3
=0.由α
1
,α
2
,α
3
线性尢关知必有k
1
=0,k
2
=0,k
3
=0,从而α
1
,α
2
,α
3
,α
4
必线性无关.而5个4维列向量必线性相关,因此任一个4维列向量都可由α
1
,α
2
,α
3
,α
4
线件表出.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jzU4777K
0
考研数学三
相关试题推荐
为实现社会主义从空想到科学的飞跃奠定了坚实的理论基础,马克思、恩格斯在新的历史条件下创立了()。
伴随中国特色社会主义进入新时代,我国经济已由高速增长阶段转向高质量发展阶段,正处在转变发展方式、优化经济结构、转换增长动力的攻关期。贯彻习近平新时代中国特色社会主义经济思想,就要着力建设现代化经济体系,实现高质量发展。推动高质量发展是(
国家安全问题事关国家安危和民族存亡。在国家安全形势越来越复杂的今天,必须坚持总体国家安全观。总体国家安全观的宗旨是()
实践证明,坚持和加强党的全面领导,是党和国家的根本所在、命脉所在,是全国各族人民的利益所在、幸福所在,是战胜一切困难和风险的“()”。
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
设有直线,则L1与L2的夹角为().
设有方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当a>1时,级数收敛.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
随机试题
肺热咳喘,麻黄首选配伍
根据《消费者权益保护法》及其他法律,请问,下列哪种说法不符合法律的规定?()
某机构因电液式万能试验机故障不得已将钢筋拉伸检测委托另外一家检测机构检测,这属于无能力分包。()
财政的()是指财政这种经济行为是凭借国家政治权力,通过颁布法令来实施的。
灭火器的选择应考虑()因素。
根据支付结算法律制度的规定,下列账户中,可以支取现金的有()。
微型计算机硬件系统中最核心的部件是:
著名法学家沈家本曾评论:“国不可无法,有法而不善与无法等。”下列可以代替该评论的名言是()。
下列关于栈的描述中正确的是
Mostofuswhoworkinearlychildhoodeducationfeelstronglythattheworkwedoisvaluable,【C1】______essential,tothewell
最新回复
(
0
)