首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内二阶可导,且f(x)和fˊˊ(x)在(-∞,+∞)内有界.证明:fˊ(x)在(-∞,+∞)内有界.
设函数f(x)在(-∞,+∞)内二阶可导,且f(x)和fˊˊ(x)在(-∞,+∞)内有界.证明:fˊ(x)在(-∞,+∞)内有界.
admin
2019-05-08
83
问题
设函数f(x)在(-∞,+∞)内二阶可导,且f(x)和fˊˊ(x)在(-∞,+∞)内有界.证明:fˊ(x)在(-∞,+∞)内有界.
选项
答案
存在正常数M
0
,M
2
,使得对[*]x∈(-∞,+∞),恒有 |f(x)|≤M
0
,|fˊˊ(x)|≤M
2
. 由泰勒公式,有 f(x+1)=f(x)+fˊ(x)+[*]fˊˊ(ξ), 其中ξ介于x与x+1之间,整理得 fˊ(x)=f(x+1)-f(x)-[*]fˊˊ(ξ), 所以 |fˊ(x)|≤|f(x+1)|+|f(x)|+[*]|fˊˊ(ξ)|≤2M
0
+[*] 故函数fˊ(x)在(-∞,+∞)内有界.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FsJ4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
求y’’-2y’-e2x=0满足初始条件y(0)=1,y’(0)=1的特解.
求函数f(x)=∫0x2(2-t)e-tdt的最大值与最小值.
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
袋中有a个白球与b个黑球。每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率。
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
设A,B为随机事件,且,令(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设P(A)>0,P(B)>0,将下列四个数:P(A),P(AB),P(A∪B),P(A)+P(B),按由小到大的顺序排列,用符号“≤”联系它们,并指出在什么情况下可能有等式成立。
已知随机变量X~N(2,9),Y服从参数为0.5的指数分布,且ρXY=一0.25,则D(2X一3Y)=________。
若在区间(0,1)上随机地取两个数u,υ,则关于x的一元二次方程x2—2υx+u=0有实根的概率为________。
随机试题
下列枚举类型的定义中,包含枚举值5的是
下列关于心室等容收缩期状态的描述,正确的是()
Thisis(theonlycopyofthepictureinexistence).Pleasekeepit.
一例肾综合征出血热少尿期第5天的患者出现肌张力下降,手足蚁走感,刺痛感反射迟钝。心电图:心率68次/分,T波高尖,QRS波群增宽。应首先考虑
下列哪项不是代谢性酸中毒的表现
单位工程中,对于投产后的()均具有举足轻重影响的分部工程,视为主分部工程。
证券营业部在同时接受两个以上委托人买进和卖出A股的委托,买卖证券的种类、数量、价格相同时,仍应向交易所申报。()
以下符合《银行从业人员职业操守》的制定目的的是()。
班级规模是从哪些方面影响课堂管理的?
已知曲线y=y(x)经过点(1,e-1),且在点(x,y)处的切线方程在y轴上的截距为xy,求该曲线方程的表达式.
最新回复
(
0
)