首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设P(A)>0,P(B)>0,将下列四个数:P(A),P(AB),P(A∪B),P(A)+P(B),按由小到大的顺序排列,用符号“≤”联系它们,并指出在什么情况下可能有等式成立。
设P(A)>0,P(B)>0,将下列四个数:P(A),P(AB),P(A∪B),P(A)+P(B),按由小到大的顺序排列,用符号“≤”联系它们,并指出在什么情况下可能有等式成立。
admin
2018-01-12
67
问题
设P(A)>0,P(B)>0,将下列四个数:P(A),P(AB),P(A∪B),P(A)+P(B),按由小到大的顺序排列,用符号“≤”联系它们,并指出在什么情况下可能有等式成立。
选项
答案
A、AB、A∪B之间的所属关系为 AB[*]A[*]A∪B, 故有P(AB)≤P(A)≤P(A∪B), 根据概率的加法公式P(A∪B)=P(A)+P(B)一P(AB),得 P(A∪B)≤P(A)+P(B), 因此四个数由小到大排列为 P(AB)≤P(A)≤P(A∪B)≤P(A)+P(B)。 P(AB)=P(A)成立的条件是AB=A,即A[*]B。 P(A)=P(A∪B)成立的条件是A=A∪B,即B[*]A。 P(A∪B)=P(A)+P(B)成立的条件是P(AB)=0,即AB=[*]。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/A3X4777K
0
考研数学三
相关试题推荐
设X1,X2,X3为来自正态总体N(0,σ2)的简单随机样本,则统计量服从的分布为
设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(EX)为5小时。设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机。试求该设备每次开机无故障工作的时间y的分布函数F(y)。
一商店经销某种商品,每周的进货量X与顾客对该种商品的需求量Y是两个相互独立的随机变量,且都服从区间[10,20]上的均匀分布。商店每售出一单位商品可得利润1000元;若需求量超过了进货量,可以其他商店调剂供应,这时每单位商品的售出获利润为500元。试求此商
设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布。(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q。
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:(I)β的矩估计量;(Ⅱ)β的最大似然估计量.
从正态总体N(3.4,62)中抽取容量为n的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n至少应取多大?
求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
盒子中有n个球,其编号分别为1,2,…,n,先从盒子中任取一个球,如果是1号球则放回盒子中去,否则就不放回盒子中;然后,再任取一个球,若第二次取到的是k(1≤k≤n)号球,求第一次取到1号球的概率.
验收成箱包装的玻璃器皿,每箱24只装.统计资料表明,每箱最多有2只残品,且含0,1,2件残品的箱各占80%,15%,5%.现在随意抽取一箱,随意检验其中4只;若未发现残品则通过验收,否则要逐一检验并更换.试求(1)一次通过验收的概率;(2)通过验收的箱
随机试题
算法分析的两个主要方面是______。
A.常染色体显性遗传疾病B.常染色体隐性遗传疾病C.性染色体显性遗传疾病D.性染色体隐性遗传疾病E.非遗传疾病幼儿型多囊肾是
子肿脾虚证的用方是子肿肾虚证的用方是
下列不属于建设工程信息管理基本环节的是()。
【背景资料】某大型工程,由于技术难度大,对施工单位的施工设备和同类工程施工经验要求比较高,而且对工期的要求比较紧迫。业主在对有关单位和在建工程考察的基础上,邀请了3家国有一级施工企业投标,通过正规的开标评标后,择优选择了其中一家作为中标单位,并与
进出口人因进出口货物税款或某些证件不能及时备齐时可申请海关先予以放行,以法定的方式向海关保证在一定期限内履行其在通关活动中承诺的义务,下列属于海关接受担保的范围有()。
下列哪些选项属于我国在政府体制内的家庭社会工作?( )
健康的概念包括()。
在μC/OS–II操作系统下,由中断服务子程序代码完成的操作一定包括()。
Whichcountryranksfourthinthewomen’s3,000mshorttrackrelayaccordingtothenews?
最新回复
(
0
)