首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性的无关3维列向量组,满足 Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3. (1)求A的特征值. (2)判断A是否相似于对角矩阵?
设A为3阶矩阵,α1,α2,α3是线性的无关3维列向量组,满足 Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3. (1)求A的特征值. (2)判断A是否相似于对角矩阵?
admin
2019-08-12
75
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性的无关3维列向量组,满足
Aα
1
=α
1
+2α
2
+2α
3
,Aα
2
=2α
1
+α
2
+2α
3
,Aα
3
=2α
1
+2α
2
+α
3
.
(1)求A的特征值.
(2)判断A是否相似于对角矩阵?
选项
答案
(1)用矩阵分解: A(α
1
,α
2
,α
3
)=(α
1
+2α
2
+2α
3
,2α
1
+α
2
+2α
3
,2α
1
+2α
2
+α
3
)=(α
1
,α
2
,α
3
)B,这里 B=[*] 从α,α,α线性无关的条件知道,(α,α,α)是可逆矩阵.于是A相似于B. (1)[*] [*]的秩为1,其特征值为0,0,6. 得B的征值为-1,-1,5.则A的征值也为-1,-1,5. (2)B是实对称矩阵,一定相似于对角矩阵,由相似的传递性,A也相似于对角矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FON4777K
0
考研数学二
相关试题推荐
设以下的A,B,C为常数,微分方程y"+2y’一3y=exsin2x有特解形式为()
设函数f’(x)在[a,b]上连续,且f(a)=0,试证明:
设f(x),g(x)在[a,b]k-阶可导,g"(x)≠0,f(a)=f(b)=g(n)=g(b)=0,证明:在(a,b)内,g(x)≠0;
设函数z=z(x,y)由方程x2一6xy+10y2一2yz—z2+32=0确定,讨论函数z(x,y)的极大值与极小值.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
求z=f(χ,y)满足:dz=2χdχ-4ydy且f(0,0)=5.(1)求f(χ,y).(2)求f(χ,y)在区域D={(χ,y)|χ2+4y2≤4}上的最小值和最大值.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
讨论a,b为何值时,方程组无解、有唯一解、有无穷多解.有解时,求其解.
设ξ0=(1,-1,1,-1)T是线性方程组的一个解向量,试求:(I)方程组(*)的全部解;(Ⅱ)方程组(*)的解中满足x2=x3的全部解.
求其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图l-4-2)。
随机试题
A.风池、太冲、合谷、内关、后溪B.风池、百会、悬颅、侠溪、行间C.上星、头维、合谷,阿是穴D.百会、通天、行间、阿是穴E.率谷、太阳、侠溪、内庭治疗头痛肝阳上亢证,应首选()
以现代护理观为指导的护理工作应以()。
在自然环境现状调查中,下列不属于社会经济调查内容的是()。
建筑产品的多样性生产的单件性使得每项工程都要( )。
对于受托代理的资产和收到的捐赠资产,民间非营利组织都是最终的受益人。()
在确定绩效考评标准时,应做到“定量准确”,其衡量标准不包括()。
简述对《普通高中地理课程标准(实验)》中“地理学习评价要注重评价形式的多样化和针对性”这一评价建议的理解。(提示:从现实意义和评价方式等方面思考)
Englandisnotabigcountry:fromnorthtosouthandfromeasttowestitisonlyaboutthreehundredmilesacross.(76)Butfo
Forwhomisthepassageintendedto?Beforetheinterview,theapplicantshouldobtainsomeinformationabout______.
在这次表演中,所有的孩子都盛装打扮,轮流唱歌跳舞。
最新回复
(
0
)