首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)内可导,下述论断正确的是 ( )
设f(x)在(0,+∞)内可导,下述论断正确的是 ( )
admin
2014-04-23
83
问题
设f(x)在(0,+∞)内可导,下述论断正确的是 ( )
选项
A、设存在X>0,在区间(X,+∞)内f
’
(x)有界,则,f
’
(x)在(X,+∞)内亦必有界.
B、设存在X>0,在区间(X,+∞)内f(x)有界,则f
’
(x)在(X,+∞)内亦必有界.
C、设存在δ>0,在区间(0,δ)内f
’
(x)有界,则f(x)在(0,δ)内亦必有界.
D、设存在δ>0,在区间(0,δ)内f(x)有界,则f
’
(x)在(0,δ)内亦必有界.
答案
C
解析
C的证明.因为在(0,δ)内f
’
(x)有界,所以存在M>0,当0<x<δ时,|f
’
(x)|≤M.对于区间(0,δ)内的任意x,另取同定的x
0
∈(0,δ),有|f(x)|=f(x)-|f(x)+f(x
0
)|≤|f(x)一f(x
0
)|+|f(x
0
)|=|f
’
(ξ)(x一x
0
)|+f(x
0
)|<Mδ+f(x
0
)|.所以f(x)在区间(0,δ)内有界.A的反例:f(x)=x,f
’
(x)=1.在区间(1,+∞)内f
’
(x)有界.但f(x)在(1,+∞)内无界.B的反例:
在区间(1,+∞)内f(x)有界,在(1,+∞)内f
’
(x)无界.D的反例:
在区间(0,1)内,f(x)有界.在(0,1)内f
’
(x)无界.
转载请注明原文地址:https://www.kaotiyun.com/show/FA54777K
0
考研数学一
相关试题推荐
设矩阵A=aaT+bbT,这里a,b为n维列向量,证明:当a,b线性相关时,R(A)≤1.
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f’(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在内有唯一的实根.
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:存在ξ∈(a,b),使得;
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:至少存在一点ξ∈(0,1),使得f(ξ)=1-ξ;
曲线上对应于t=π/4点处的法线方程.
设f(x)=(2-x+x2)In(1+2x),则f(5)(0)=_________________。
设A是3阶矩阵,α1,α2,α3为线性无关的向量,且Aα1=α1+2α2+3α3,Aα2=一α2+α3,Aα3=2α2,则A11+A22+A33=___________________.
设A,B为n阶可逆矩阵,则().
设向量组α1,α2线性无关,α1,α2,β1线性相关,又非零向量β2与α1,α2正交,则下列结论正确的是().
随机试题
左心衰竭时可出现哪种类型脉搏
医疗器械的使用所达到的目的是( )。
严重肝脏疾病患者手术前,最需要补充的维生素是
需对以下两宗地块进行估价:1号地块是一宗临街宽度80m,临街深度50m,面积4000m2矩形土地;2号地块与1号地块相邻接,是一块临街宽度40m,临街深度40m,面积1600m2,形状略不规整的土地。该两地块的法定用途为商业,土地使用权分别由甲、乙两单位以
机关、团体、企业、事业单位应当履行的消防安全职责有()。
根据增值税法律制度的规定,以下情形中,享受增值税免税优惠的有()。
人民代表大会制度是中华人民共和国的根本制度。()
如果两个交换机之间设置多条Trunk,则需要用不同的端口权值或路径费用来进行负载均衡。默认情况下,端口的权值是——。
下列有关类继承的叙述中,错误的是()。
Creditcardisbecomingmoreandmorepopular,becauseit’sveryconvenient.Youcantakeittoanywherewithouttakingalotofc
最新回复
(
0
)