首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论 αm能否由α1,α2,…,αm-1线性表示?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论 αm能否由α1,α2,…,αm-1线性表示?
admin
2019-08-06
92
问题
设α
1
,α
2
,…,α
m-1
(m≥3)线性相关,向量组α
2
,…,α
m
线性无关,试讨论
α
m
能否由α
1
,α
2
,…,α
m-1
线性表示?
选项
答案
假设α
m
能由α
1
,α
2
,…,α
m-1
线性表示,即有实数k
1
,k
2
,…,k
m-1
, 使得 α
m
=k
1
α
1
+k
2
α
2
+…+k
m-1
α
m-1
; 又由式(1),α
1
能由α
2
,α
3
,…,α
m-1
线性表示,所以α
m
能由α
2
,α
3
,…,α
m-1
线性表示,所以α
2
,α
3
,…,α
m
线性相关,与已知矛盾,所以假设不成立,α
m
不能由α
1
,α
2
,…,α
m-1
线性表示.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/F5J4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)-f(x)=0在(0,1)内有根.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξ∈(a,b),使得f’’(ξ)=f(ξ);
对二元函数z=f(x,y),下列结论正确的是().
设A为m×n阶实矩阵,且r(A)=N.证明:ATA的特征值全大于零.
设的一个特征值为λ1=,其对应的特征向量为求常数a,b,c;
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为求此二次型.
设二维非零向量α不是二阶方阵A的特征向量.证明:α,Aα线性无关;
设连续非负函数f(x)满足f(x)f(-x)=1,则=______.
设k>0,则函数的零点个数为().
随机试题
8个月皮肤蜡黄,虚胖,头部全身震颤,红细胞2.1×1012/L,血红蛋白80g/L。应诊断为9月,男孩,虚胖,头发稀疏发黄,羊乳喂养,化验白细胞中性粒细胞平均分叶数超过3~4叶,骨髓中各期幼红细胞巨幼变。应诊断为
A.缺血性心肌病B.心包积液C.扩张型心肌病D.肥厚型心肌病E.风湿性心瓣膜病
5岁。高热3天,口腔溃疡2天,啼哭,流涎,拒食。体检发现患儿全口牙龈红肿,上腭粘膜可见丛集成簇的针头大小透明水疱,部分已破溃为浅表溃疡,周围粘膜充血水肿广泛。患者的血液化验可见
背景:某洒店工程客房采用轻钢龙骨双层石膏板隔墙,走廊长度50m,宽度2.5m,中间是电梯间,走廊采用轻钢龙骨双层石膏板平面吊顶,室内采用轻钢龙骨石膏板造型吊顶。已知:(1)客房采用轻钢龙骨石膏板隔墙天地龙骨固定间距1200mm,竖龙骨
隧道按面积分为小断面、中等断面、大断面和特大断面隧道,其中小断面的面积范围是()m2。
关于合伙型基金,下列说法错误的是()。
行政机关行使法律规定的行政裁量权必须符合合理性原则,作出的行政行为才具有实质合法性。行政机关行使行政裁量权的这种合理性要求之一是()。
某企业为创业投资企业。2011年8月113,该企业向境内未上市的中小高新技术企业投资200万元。2013年度企业利润总额890万元;未经财税部门核准,提取风险准备金10万元。已知企业所得税税率为25%。假定不考虑其他纳税调整事项,2013年该企业应纳企业所
动产质权设定的生效时间是()。
WhichofthefollowingcanMr.ButlerNOTbenormallyregardedas?
最新回复
(
0
)