首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称阵且正定,B为m×n实矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为m阶实对称阵且正定,B为m×n实矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
admin
2018-07-27
82
问题
设A为m阶实对称阵且正定,B为m×n实矩阵,试证:B
T
AB为正定矩阵的充分必要条件是B的秩r(B)=n.
选项
答案
必要性设B
T
AB正定,则对任意n维非零列向量x, 有x
T
(B
T
AB)x>0,即(Bx)
T
A(Bx)>0,于是Bx≠0.因此,Bx=0只有零解,从而有r@B@=n. 充分性因(B
T
AB)
T
=B
T
A
T
B=B
T
AB,故B
T
AB为实对称矩阵,若r@B@=n,则齐次线性方程组Bx=0只有零解,从而对任意n维非零列向量x,有Bx≠0,又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)>0,于是当x≠0时,x
T
(B
T
AB)x=(Bx)
T
A(Bx)>0,故B
T
AB为正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EXW4777K
0
考研数学三
相关试题推荐
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
设f(x)是在(-∞,+∞)上连续且以T为周期的周期函数,求证:方程f(x)-的闭区间上至少有一个实根.
设A是m×n矩阵,B是n×P矩阵,如AB=0,则r(A)+r(B)≤n.
若αi1,αi2,…,αir与αj1,αj2,…,αjt都是α1,α2,…,αs的极大线性无关组,则r=t.
若β=(1,2,t)T可由α1=(2,1,1)T,α2=(-1,2,7)T,α3=(1,-1,-4)T线性表出,则t=_______.
证明极限不存在.
设4阶矩阵A的秩为2,则r(A*)=_____.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
随机试题
尽管纯金属强度、硬度低,冶炼困难,价格昂贵,但因其具有较高的导电、导热性,所以在工业生产中广泛应用。
美国有关规范房地产经纪人的法律中,最严密的法令是()。
已知,则f(x)在(0,π)内的正级数的和函数s(x)在处的值及系数b3分别为()。
国外建筑安装工程费用中的开办费一股包括()等。【2017年真题】
我国建造师执业资格制度暂行规定中对建造师的执业范围规定为()
关于企业所得税特殊税前扣除项目的规定,下列表述不正确的是()。
下列关于库存现金的表述正确的有()。
2000年、2005年、2006年发达国家、发展中国家和世界总体的国际储备(不包括黄金)和黄金储备变化情况,如下图所示:部分国家国际储备和黄金储备的变化情况如下表所示:2000年到2006年黄金储备量下降幅度超过11%的国家有多少个?(
马克思主义认为,共产主义社会的基本特征是()
【B1】【B13】
最新回复
(
0
)