首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
admin
2016-10-20
81
问题
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
选项
答案
令F(x)=f(a+x)+f(a-x),则F(x)在[0,h]上连续,在(0,h)内可导,由拉格朗日中值定理可得存在0∈(0,1)使得 [*] 由于 F(h)-F(0)=f(a+h)+f(a-h)-2f(a), F’(x)=f’(a+x)-f’(a-x), F’(θh)=f’(a+θh)-f’(a-θh), 因此存在满足0<θ<1的θ使得 [*]
解析
在[a,a+h]和[a-h,a]上分别对f(x)应用拉格朗日中值定理可得到存在θ
1
,θ
2
∈(0,1)使得
f(a+h)-f(a)=f’(a+θ
1
h)h, f(a-h)-f(a)=-f’(a-θ
2
h)h,
这时有
然而θ
1
与θ
2
未必相等.若将f(a+h)-2f(a)+f(a-h)重新组合成
f(a+h)-2f(a)+f(a-h)=[f(a+h)+f(a-h))]-[f(a+0)+f(a-0)],
我们发现它是F(x)=f(a+x)+f(a-x)在点x=h的值减去在点x=0的值,并且f’(a+θh)-f’(a-θh)=F’(θh),要证的等式就是对F(x)在[0,h]上应用拉格朗日中值定理的结果.
转载请注明原文地址:https://www.kaotiyun.com/show/WcT4777K
0
考研数学三
相关试题推荐
[*]
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
求由下列方程所确定的隐函数y=y(x)的导数dy/dx:(1)y=1-xey;(2)xy=ex+y;(3)xy=yx;(4)y=1+xsiny.
判别下列级数是否收敛,如果收敛,是条件收敛还是绝对收敛?
用函数极限的定义证明:
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
利用等价无穷小的代换性质,求下列极限:
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f’(x)]都存在,且f-1[f-1(x)]≠0.证明:
随机试题
AstudyinCyberpsychology,Behavior,andSocialNetworkingsuggeststhatartificialintelligenceholdsapromisingfutureinhe
在射极输出器中,UGB=12V,RB=200kΩ,RE=2kΩ,RL=2kΩ,晶体管的β=60,求静态工作点IBQ、ICQ、UCEO,输入、输出电阻以及电压放大倍数。
有别于损耗发生的原因,下列可以导致商品在物流过程中的质量劣度的是()
[2010年,第7题]下列各点中为二元函数z=x3-y3-3x2+3y-9x的极值点的是()。
下列有关乳酸菌的叙述,正确的是()。
启发式加工是指人们在面对说服信息时,采用简单规则或心理捷径的方法对其进行吸收和加工。下列不属于启发式加工的是()
Alice:Tedaskedmetogotothebeachthisweekend.What’syourplan?Laura:I’vetoworkovertime.SometimesIenvyyoualot.
以下音乐作品中,()是由黄自创作的。
甲某是一瓜农,因其西瓜常被人偷,遂将剧毒有机农药洒在几个西瓜上,并做好记号。2005年4月23日,某市5名市民食用西瓜中毒死亡。经侦查表明,原来是甲某的邻居乙某顺手偷了甲某地里的几个西瓜运到城里去卖所致。本案中,甲某对5名市民的死亡所持的心理态度不属于(
Foryears,French,ItalianandAmericanluxurybrandshave【C1】______asChina’smiddleclassdevelopeda(n)【C2】______forhigh-en
最新回复
(
0
)