首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
admin
2016-10-20
57
问题
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
选项
答案
由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件,故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)-f(a)=f’(ξ
1
)(c-a), ξ
1
∈(a,c); f(b)-f(c)=f’(ξ
2
)(b-c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c-a), ① -f(c)=f’(ξ
2
)(b-c). ② 由于c-a>0,b-c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0,f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 [*]
解析
证明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
转载请注明原文地址:https://www.kaotiyun.com/show/PcT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设A,B是同阶正定矩阵,则下列命题错误的是().
证明等价无穷小具有下列性质:(1)α~α(自反性);(2)若α~β,则β~α(对称性);(3)若α~β,β~γ,则α~γ(传递性).
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
设,试用定义证明f(x,y)在点(0,0)处可微分.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设函数f(y)的反函数f-1(x)及fˊ[f-1(x)]与fˊˊ[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
随机试题
工夫红茶的叶底审评,主要评其_______和_______两项。
A、3/4冠B、金属烤瓷全冠C、铸造开面冠D、塑料全冠E、铸造金属全冠前牙固定桥固位体应选择
A.麻子仁丸B.增液汤C.温脾汤D.济川煎E.黄芪汤治疗冷秘宜选
《中华人民共和国大气污染防治法》规定:新建的所采煤炭属于()的煤矿,必须建设配套的煤炭洗选设施,使煤炭中的含硫分、含灰分达到规定的标准。
下列各项属于预算定额编制依据的是()。
某施工企业通过投标获得了某机电安装工程的施工总承包任务,该施工企业中标后的第10天与业主签订了固定总价机电安装施工总承包合同。随后,该施工企业将部分主体工程分包给具有相应资质条件的分包人,并签订了分包合同。施工总承包合同中约定的合同工期为380d,而依施工
下列有关注册会计师针对“回函可靠性”的考虑中,错误的是()。
CRT的IQ分数是先将被试者的原始分数转化成()而后得来的。
培训课程的构成要素包括()。
“向罗马进军”
最新回复
(
0
)