首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解. (I)求常数a,b; (Ⅱ)求BX=0的通解.
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解. (I)求常数a,b; (Ⅱ)求BX=0的通解.
admin
2019-06-06
81
问题
设A=
,B为三阶非零矩阵,
为BX=0的解向量,且AX=α
3
有解.
(I)求常数a,b;
(Ⅱ)求BX=0的通解.
选项
答案
由B为三阶非零矩阵得r(B)≥1,从而BX=0的基础解系最多有两个线性无关的 [*] b=5,从而a=15.由α
1
,α
2
为BX=0的两个线性无关解得3-r(B)≥2,从而r(B)≤1,再由r(B)≥1得r(B)=1,α
1
,α
2
为BX=0的一个基础解系, [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ELJ4777K
0
考研数学三
相关试题推荐
设X1,X2,…,X5是总体X~N(0,22)的简单随机样本,X=X.(Ⅰ)令随机变量Y=+(X4一X5)2,求EY与DY;(Ⅱ)求随机变量Z=的分布;(Ⅲ)给定α(0<α<0.5),常数c满足P{Z>c}=α,设随机变量U~F(2,1),求P{U>
设向量组(i)α1=(1,2,一1)T,α2=(1,3,一1)T,α31=(一1,0,a一2)T,(ii)β1=(一1,一2,3)T,β2=(一2,一4,5)T,β3=(1,b,一1)T.设A=(α1,α2,α3),B=(β1,β2,β3).问:(Ⅰ
设A是3阶方阵,有3阶可逆矩阵P,使得P-1AP=,A*是A的伴随矩阵,则P-1A*P=()
设微分方程x2y’+2xy=2(ex一1).(Ⅰ)求上述微分方程的通解;(Ⅱ)求使y(x)存在的那个解及此极限值.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-11=0,b=α1+α2+…+αn.求方程组AX=b的通解.
令[*]则f(x)=sin3x+A,xf(x)=xsin3x+Ax两边积分得[*]即[*]从而[*]故[*]
改变积分次序得[*]
当x→1时,的极限为().
求下列不定积分:
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
随机试题
Theproblemisbelieved______atthemeetingtwodaysago.
利用S曲线分析法控制机场工程施工,可获得的主要信息有()。
某商场一层为服饰卖场,按消防安全标准,配置了火灾自动报警系统。在火灾自动报警系统布线时,从接线盒、线槽等处引到探测器底座、控制设备、扬声器的线路,当采用金属软管保护时,其长度不应大于()m。
下列关于著作权的归属,说法正确的是()。
在知觉过程中,人们力求根据已有知识经验对知觉对象作出某种解释,使其具有一定意义,即知道它“是什么”,并能用语词把它表示出来,这叫作()。
假设你竞争成功,成为市农机局局长,发现基层农机技术人员非常短缺,给农业发展和农业机械化推广带来很多困难。面对这一问题,你将怎样解决?
三个箱子,第一个箱子中有4个黑球与1个白球,第二个箱中有3个黑球与3个白球,第三个箱中有3个黑球与5个白球.现随机地选取一个箱子从中任取1个球,则这个球为白球的概率是_______;若已发现取出的这个球是白球,则它不是取自第二个箱子的概率是_______.
某企业为了构建网络办公环境,每位员工使用的计算机上应当具备的设备是:
Ifgenderconflictscontinueattheircurrentrate,mypartnergloomilyobserved,menmayfadeintoextinctionandwomenwillma
【S1】【S6】
最新回复
(
0
)