首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已 知 齐 次 线 性 方 程 组 其中,试讨论a1,a2,…,an和b满足何种关系时, (Ⅰ)方程组仅有零解; (Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
已 知 齐 次 线 性 方 程 组 其中,试讨论a1,a2,…,an和b满足何种关系时, (Ⅰ)方程组仅有零解; (Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
admin
2013-08-05
73
问题
已 知 齐 次 线 性 方 程 组
其中
,试讨论a
1
,a
2
,…,a
n
和b满足何种关系时,
(Ⅰ)方程组仅有零解;
(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
选项
答案
由题设,设方程组的系数矩阵为A,则 [*] (Ⅰ)当b≠0且b+[*]a
i
≠0时,|A|≠0,r(A)=n,此时方程组仅有零解; (Ⅱ)当b=0时,原方程组的同解方程组为a
1
x
1
+a
2
x
2
+…a
n
x
n
=0, 由已知条件[*]a
i
≠0,知a
i
(i=1,2,…,n)不全为0, 不失一般性,可假设a
1
≠0,则不难求得原方程组的一个基础解系为由已知条件知b≠0,则A可化为阶梯形 [*] 不难求得原方程组的基础解系为[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EJ54777K
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是()
设z=f[φ(x)-y,ψ(y)+x],f具有连续的二阶偏导数,φ,ψ可导,求
设线性方程组设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
设函数,其中f(x)是连续函数,且f(0)=2,求φ’(x).
设y=f(x)有二阶连续导数,且满足xy“+3xy‘2=1-e-x.若f(0)=f’(0)=0,证明x>0时,
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解.
设证明向量组α1,α2,…,αn与向量组β1,β2,…,βn等价.
将下列曲线化为参数方程:
已知y1=exsinx+e2x与y2=-exsinx+e2x为某二阶常系数非齐次线性微分方程的特解,则该非齐次线性微分方程为_________________.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.证明β,Aβ,A2β线性无关;
随机试题
彩色电视机相对于黑白电视机来说,属于()
患者李某,女性,56岁。干咳,少痰色白,声哑,口咽干燥,神疲渐瘦,伴有潮热,盗汗,舌红少苔,脉细数。上述咳嗽其治则为
下面关于骨骺的说法正确的是
期货投资咨询业务人员应当与()岗位独立,职责分离。
C30混凝土中的“30”是指()。
下列各项中,属于我国行政外部监督体系的是()。
一种服装,甲店比乙店的进货价便宜10%,甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的售价便宜11.2元,问:甲店的进货价是多少元?
在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分。今有4个人统计这次比赛中全部得分的总数,由于有人粗心,其数据各不相同,分别为1979、1980、1984、1985,经核实,其中有一人统计无误,则这次比赛共有多少名
下面不属于我国古代四大民间故事的是()。
YoucanfindahotelinLondonveryeasilythroughlistingsinvariousfreemagazines.Theyoftenprovideinformationonthehot
最新回复
(
0
)