首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解.
admin
2021-02-25
86
问题
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵
(k为常数),且AB=O,求线性方程组Ax=0的通解.
选项
答案
由于AB=0,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=1或r(A)=2. 对于k≠9,由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数. 对于k=9,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Ax=0的基础解系由一个向量构成.又因为[*],所以Ax=0的通解为x=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0,不妨设a≠0,η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Ax=0的两个线性无关的解,故Ax=0的通解为 x=c
4
η
1
+c
5
η
2
,其中c
4
,c
5
为任意常数.
解析
本题考查抽象齐次线性方程组的求解问题.主要是将矩阵方程转化成线性方程组.并注意运用AB=O,则r(A)+r(B)≤n.未知数的个数(n)-系数矩阵的秩r(A)=基础解系解向量的个数.齐次线性方程组通解的结构,若Ax=0的系数矩阵A的秩r(A)=r,则通解x=k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
.
转载请注明原文地址:https://www.kaotiyun.com/show/wa84777K
0
考研数学二
相关试题推荐
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
设A=,则下列矩阵中与A合同但不相似的是
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
随机试题
某男64岁,因胸闷、心悸而就诊。经检查证实有主动脉瓣关闭不全,下列哪一项与病情不符合
甲企业2011年6月20日购置一台不需要安装的A设备投入企业管理部门使用,该设备入账价值为600万元,预计使用5年,预计净残值为30万元,采用双倍余额递减法计提折旧。2011年12月31日和2012年12月31日分别对A设备进行检查,确定A设备的可收回金额
在英国,不同阶层的教育曾经有着明显的区分——资产阶级和贵族的子女有权上质量较高的公立学校,毕业后进入剑桥和牛津等大学接受世界上最优秀的学术教育;而工人的孩子只能接受职业教育,进而继续成为工人。这种教育制度属于()。
“塔”属于佛教建筑。()
你对加班有什么看法?
Scientistsareexpectedtocarryoutthoroughgoingstudiestobackupclaim’smadeconcerningnewdrugs.
(2015年真题)甲将住房出租给乙。签订合同前乙来看房,发现室内有很浓的装修气味。甲告诉乙,开开窗,过几天味道就没了。乙住了两个月后,气味依然很浓。经检测,该房屋有害气体严重超标。对此,乙()。
下面关于防火墙的说法,正确的是(69)。
网络反病毒技术包括【】、检测病毒、消毒3种技术。
在一个C语言程序中
最新回复
(
0
)