首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫0χf(t)dt=1在(0,1)有且仅有一个根.
设f(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫0χf(t)dt=1在(0,1)有且仅有一个根.
admin
2019-08-23
72
问题
设f(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫
0
χ
f(t)dt=1在(0,1)有且仅有一个根.
选项
答案
令φ(χ)=2χ-∫
0
χ
f(t)dt-1,φ(0)=-1,φ(1)=1-∫
0
1
f(t)dt, 因为f(χ)<1,所以∫
0
1
f(t)dt<1,从而φ(0)φ(1)<0, 由零点定理,存在c∈(0,1),使得φ(c)=0. 因为φ′(χ)=2-f(χ)>0,所以φ(χ)在[0,1]上单调增加,故方程2χ-∫
0
χ
f(t)dt=1有且仅有一个根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/E2A4777K
0
考研数学二
相关试题推荐
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明:在开区间(a,b)内至少存在一点ξ,使。
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1﹢ξ2﹢ξ3.证明:(I)B不是A的特征向量;(Ⅱ)向量组β,Aβ,A2β线性无关.
设z=z(u,v)具有二阶连续偏导数,且z=z(x-2y,x﹢3y)满足求z=z(u,v)所满足的方程,并求z(u,v)的一般表达式.
设A,B,C为常数,则微分方程y”﹢2y’﹢5y=e-xcos2x有特解形式()
求函数u=在约束条件下的最大值与最小值.
设p(x),q(x),f(x)≠0均是关于x的已知连续函数,y1(x),y2(x),y3(x)是y”﹢p(x)y’﹢q(x)y=f(x)的3个线性无关的解,C1,C2是两个任意常数,则该非齐次方程的通解是()
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明:aij=AijATA=E且|A|=1;
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用上题的结果判断矩阵B一CTA—1C是否为正定矩阵,并证明结论。
求极限
设有微分方程y′-2y=φ(χ),其中φ(χ)=试求在(-∞,+∞)内的连续函数为_______,y=y(χ),使之在(-∞,1),(1,+∞)内都满足所给方程,且满足条件y(0)=0.
随机试题
从不同角度提出审美活动起源于人的某种本能的学者有()
参苓白术散的主治不包含
在我国承包、租赁、拍卖“四荒”使用权,最长不得超过()年。
设计人在建设工程施工前,需要向()说明建设工程勘察、设计意图,解释建设工程勘察、设计文件。
在市场经济条件下,各国政府在初等教育方面都进行了很大的投资,通常会普及初等义务教育,政府这样做的一个主要原因是()。
下列各项中,属于记账凭证账务处理程序优点的有()。
贝多芬的交响曲中被称为“命运交响曲”的是()。
下列句子中,不是判断句的一项是()。
某县法院在审理一起民事案件中,为查明案件事实,对一当事人的信件进行拆检,弄清了案情并作出了判决。下列说法正确的是()。
某市要建垃圾焚烧厂,由于居民反对,政府劝说无果,最终放弃建设计划。你对此如何看?
最新回复
(
0
)