首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1﹢ξ2﹢ξ3. 证明:(I)B不是A的特征向量; (Ⅱ)向量组β,Aβ,A2β线性无关.
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1﹢ξ2﹢ξ3. 证明:(I)B不是A的特征向量; (Ⅱ)向量组β,Aβ,A2β线性无关.
admin
2018-12-21
82
问题
设A是3阶矩阵,λ
1
,λ
2
,λ
3
是A的3个不同的特征值,对应的特征向量分别是ξ
1
,ξ
2
,ξ
3
,令β=ξ
1
﹢ξ
2
﹢ξ
3
.
证明:(I)B不是A的特征向量;
(Ⅱ)向量组β,Aβ,A
2
β线性无关.
选项
答案
(I)已知Aβ=A(ξ
1
﹢ξ
2
﹢ξ
3
)=λ
1
ξ
1
﹢λ
2
ξ
2
﹢λ
3
ξ
3
. 若β是A的特征向量,假设对应的特征值为μ,则有Aβ=μβ=μ(ξ
1
﹢ξ
2
﹢ξ
3
)=λ
1
ξ
1
﹢λ
2
ξ
2
﹢λ
3
ξ
3
, 从而得(μ-λ
1
)ξ
1
﹢(μ-λ
2
)ξ
2
﹢(μ-λ
3
)ξ
3
=0. ξ
1
,ξ
2
,ξ
3
是不同特征值对应的特征向量,由定理知ξ
1
,ξ
2
,ξ
3
线性无关,从而得 λ
1
=λ
2
=λ
3
=μ,这和λ
1
,λ
2
,λ
3
互不相同矛盾.故β=ξ
1
﹢ξ
2
﹢ξ
3
不是A的特征向量. (Ⅱ)法一用线性无关的定义证. 假设存在数k
1
,k
2
,k
3
,使得 k
1
β﹢k
2
Aβ﹢k
3
A
2
β=0. 将β=ξ
1
﹢ξ
2
﹢ξ
3
及Aξ
i
=λ
i
ξ
i
(i=1,2,3)代入上式得k
1
(ξ
1
﹢ξ
2
﹢ξ
3
)﹢k
2
(λ
1
ξ
1
﹢λ
2
ξ
2
﹢λ
3
ξ
3
)﹢k
3
(λ
1
2
ξ
1
﹢λ
2
2
ξ
1
﹢λ
3
2
ξ
3
)=0, 整理得(k
1
﹢k
2
λ
1
﹢k
3
λ
1
2
)ξ
1
﹢(k
1
﹢k
2
λ
2
﹢k
3
λ
2
2
)ξ
2
﹢(k
1
﹢k
2
λ
3
﹢k
3
λ
3
2
)ξ
3
=0. 因ξ
1
,ξ
2
,ξ
3
线性无关,则有 [*] 又λ
i
(i=1,2,3)互不相同,故方程组(*)的系数矩阵的行列式[*]=(λ
3
2-λ
2
)(λ
3
-λ
1
)(λ
2
-λ
1
)≠0, 故方程组(*)仅有零解,即k
1
=k
2
=k
3
=0,所以β,Aβ,A
2
β线性无关. 法二 用秩来证.因 (β,Aβ,A
2
β)=(ξ
1
﹢ξ
2
﹢ξ
3
,λ
1
ξ
1
﹢λ
2
ξ
2
﹢λ
3
ξ
3
,λ
1
2
ξ
1
﹢λ
2
2
ξ
2
﹢λ
3
2
ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)[*](ξ
1
,ξ
2
,ξ
3
)C. 其中|C|=[*]≠0,所以C是可逆矩阵. 故r(β,Aβ,A
2
β)=r(ξ
1
,ξ
2
,ξ
3
)=3.因此β,Aβ,A
2
β线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2Aj4777K
0
考研数学二
相关试题推荐
(2007年)如图,连续函数y=f(χ)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(χ)=∫0χf(t)dt,则下列结论正确【】
(1997年)求的值.
(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a);(Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存
(2014年)一根长为1的细棒位于χ轴的区间[0,1]上,若其线密度ρ(χ)=-χ2+2χ+1,则该细棒的质心坐标=_______.
(2011年)设I=lnsinχdχ,J=lncotχdχ,K=lncosχdχ,则I,J,K的大小关系为【】
(2011年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
(2010年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(2013年)矩阵相似的充分必要条件为【】
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
随机试题
2019年6月25日,李克强总理在全国深化“放管服”改革优化营商环境电视电话会议上的讲话中指出,简政放权成效明显,但还要继续深化。下列选项不符合讲话内容的是:
(2020年青岛)课堂管理是维持课堂秩序的重要手段,教师有效制止学生课堂不良行为的做法有()
苏维埃俄国开始实行新经济政策是在【】
A.Ⅰ期临床试验B.Ⅱ期临床试验C.Ⅲ期临床试验D.Ⅳ期临床试验病例数为20—30例的是
在法院收到要求宣布荣华食品有限责任公司破产的申请之后,下列主体的哪些行为是违反法律规定的?()力尚商业银行未及时收取债务的情况引起了银监会的注意,派员清查力尚银行资产情况之后发现,该银行也早已资不抵债。在这种情况下,下列哪些处理方式是合法的?(
根据《物权法》规定,下列关于承包期,表述正确的是()。
银行信贷资金平衡实质上是()。
工业机器人多采用计算机控制,计算机控制系统一般分为()。
下列关于公司登记的说法中,不正确的有()。Ⅰ.公司合并,登记事项发生变更的,应当依法向公司登记机关办理设立登记Ⅱ.公司解散的,应当依法办理公司注销登记Ⅲ.设立新公司的,应当依法办理公司设立登记Ⅳ.公司增加或者
旅游者丢失行李且一时找不回,导游员要为客人购买必备的生活用品。()
最新回复
(
0
)