首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
admin
2019-09-04
83
问题
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
选项
答案
令f(x)=arctanx-ax,由f’(x)=[*]-a=0得x=[*] 由f’’(x)=[*]为f(x)的最大值点, 由[*]f(x)=-∞,f(0)=0得方程arctanx=ax在(0,+∞)内有且仅有唯一实根,位于[*]内.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DiJ4777K
0
考研数学三
相关试题推荐
(2008年)如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
已知试确定常数a,b,使得当x→0时,f(x)~axb.
设函数f(x)在[0,1]上连续.在开区间(0,1)内大于零,并且满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时.图形S绕x轴旋转一周所得旋转体的体积最小.
设有线性方程组证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2.证明r(A)=2;
设3阶矩阵B≠O,且B的每一列都是以下方程组的解:证明|B|=0.
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(Ф(2.328)=0.9900)
平面区域D=((x,y)||x|+|y|≤1},计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2)(eλx一e-λy)dσ,常数λ>0.
设随机变量X满足|X|≤1,且P(X=一1)=,P(X=1)=,在{一1<X<1}发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求P(X<0).
设随机变量X满足|X|≤1,且P(X=一1)=,P(X=1)=,在{一1<X<1}发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
随机试题
背景资料:某住宅工程由7栋单体组成,地下2层,地上10~13层,总建筑面积11.5万m2。施工总承包单位中标后成立项目经理部组织施工。项目总工程师编制了《临时用电组织设计》,其内容包括:总配电箱设在用电设备相对集中的区域;电缆直接埋地敷设穿过临建设施时
血糖是指
治疗妊娠期高血压疾病,首选的解痉药是
石细胞分枝,有晶鞘纤维,含生物碱含α-β桉油醇,有镇静作用
在绝热层的施工过程中,其管道保温层施工技术要求包括()。
某工作第4周之后的计划进度与实际进度如下图所示,从图中可获得的正确信息有( )。
甲是基金管理公司基金经理,利用业余时间在某私募机构兼职提供投资咨询,该情形被发现后,甲声称绝没有泄露基金管理公司投资信息,关于甲的行为,以下表述错误的是()。
保荐机构在对中小企业板发行人持续督导工作中,应对( )发表独立意见。
在空间坐标系的原点处,有一单位正电荷,设另一单位负电荷在椭圆z=x2+y2,x+y+z=1上移动,问两电荷间的引力何时最大,何时最小?
A、Nervousandunsureofherself.B、Calmandconfidentofherself.C、Courageousandforceful.D、Distractedandreluctant.A
最新回复
(
0
)