首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
admin
2018-09-25
53
问题
设A为n阶矩阵,λ
1
和λ
2
是A的两个不同的特征值,x
1
,x
2
是分别属于λ
1
和λ
2
的特征向量.证明:x
1
+x
2
不是A的特征向量.
选项
答案
反证法 假设x
1
+x
2
是A的特征向量,则存在数λ,使得A(x
1
+x
2
)=λ(x
1
+x
2
),则 (λ-λ
1
)x
1
+(λ-λ
2
)x
2
=0. 因为λ
1
≠λ
2
,所以x
1
,x
2
线性无关,则 [*] =>λ
1
=λ
2
.矛盾.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Deg4777K
0
考研数学一
相关试题推荐
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A-B2是对称矩阵.
设α,β均为3维列向量,βT是β的转置矩阵,如果则αTβ=___________.
设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ=
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
设α1=(1,1)T,α2=(1,0)T和β1=(2,3)T,β2=(3,1)T,求由α1,α2到β1,β2的过渡矩阵.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:(Ⅰ)P{|一μ|≤0.10}≥0.90;(Ⅱ)D≤0.10;(Ⅲ)E|-μ|≤0.10.
设流速V=(x2+y2)j+(z-1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.69):(Ⅰ)∑为圆锥面x2+y2=z2(0≤z≤1),取下侧;(Ⅱ)∑为圆锥体(z2≥x2+y2,0≤z≤1)的底面,法向量朝上.
随机试题
现代汉语普通话中有_____个轻擦音,它们是_____。
以公共政策基础理论及其相关实践为学术研究对象的政策研究组织是________。
小说主人公姚纳出自()
肺癌放射治疗时,肺纤维化一般在放疗后______将逐渐出现
对精神分裂症有诊断意义的症状是
代征代缴“三税”的单位和个人,其城建税的纳税地点是()。
(河南招警2011—43)有四个数,去掉最大的数,其余三个数的平均数是41;去掉最小的数,其余三个数的平均数是60;最大数与最小数的和是95。那么这四个数的平均数是多少?()
Takesomespareclothesincaseyougetwet.
Thetowerclock______elevenwhenHenrywalkedoutofthepolicestation.
Technology,entrepreneurship(创业能力)andinnovationsarekeywordsthatsumupthenewera.TheInternetisnotjustatechnol
最新回复
(
0
)