首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ1=[1,-2,3,2]T,ξ2=[2,0,5,-2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是( ).
设ξ1=[1,-2,3,2]T,ξ2=[2,0,5,-2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是( ).
admin
2021-07-27
49
问题
设ξ
1
=[1,-2,3,2]
T
,ξ
2
=[2,0,5,-2]
T
是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是( ).
选项
A、α
1
=[1,-3,3,3]
T
B、α
2
=[0,0,5,-2]
T
C、α
3
[-1,-6,-1,10]
T
D、α
4
=[1,6,1,0]
T
答案
C
解析
已知Ax=0的基础解系为ξ
1
,ξ
2
,则α
i
(i=1,2,3,4)是Ax=0的解向量,α
i
可由ξ
1
,ξ
2
线性表出,非齐次线性方程组ξ
1
y
1
+ξ
2
y
2
=α
i
有解.逐个判别α
i
较麻烦,合在一起作初等行变换进行判别较方便.
显然因r([ξ
1
,ξ
2
])-r([ξ
1
,ξ
2
|α
3
])=2,ξ
1
y
1
+ξ
2
y
2
=α
3
有解,故α
3
是Ax=0的解向量.故应选(C).而r([ξ
1
,ξ
2
])=2≠r([ξ
1
,ξ
2
|α
i
])=3,i=1,2,4,故α
1
,α
2
,α
4
不是Ax=0的解向量.
转载请注明原文地址:https://www.kaotiyun.com/show/DLy4777K
0
考研数学二
相关试题推荐
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
证明:当x>0时,x2>(1+x)ln2(1+x).
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
求微分方程y〞+y=χ2+3+cosχ的通解.
设A,B均为正定矩阵,则()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设A为m×n矩阵,且r(A)=m,则()
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
随机试题
估计一般细胞用于维持钠泵运转的能量大约占其代谢产能的
新生儿,男性,生后3天。体重3200g,皮肤巩膜发黄,血清总胆红素280μmol/L。对该新生儿最主要的观察重点是
关于行政主体概念的叙述错误的是()。
下列各项中,属于计算存货账面余额与存货跌价准备比例需分析的内容是()。
契约型基金和公司型基金都具有法人资格。()
贷款安全性调查中,对于申请外汇贷款的客户,业务人员尤其要注意()对抵押担保额的影响程度。
【2013年淄博市属文昌湖区】教育与生产力的关系叙述不正确的是()。
论需要的基本特征。
“人民的总理周恩来”是偏正短语。
革命在社会发展中的重要作用是( )
最新回复
(
0
)