首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,求: (1)α1能否由α2,α3线性表示?证明你的结论. (2)α4能否由α1,α2,α3线性表示?证明你的结论.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,求: (1)α1能否由α2,α3线性表示?证明你的结论. (2)α4能否由α1,α2,α3线性表示?证明你的结论.
admin
2020-06-05
41
问题
设向量组α
1
,α
2
,α
3
线性相关,向量组α
2
,α
3
,α
4
线性无关,求:
(1)α
1
能否由α
2
,α
3
线性表示?证明你的结论.
(2)α
4
能否由α
1
,α
2
,α
3
线性表示?证明你的结论.
选项
答案
(1)α
1
能由α
2
,α
3
线性表示. 方法一 因为已知向量组α
2
.α
3
,α
4
线性无关,则它的部分组α
2
,α
3
线性无关,又因为α
1
,α
2
,α
3
线性相关,故α
1
能由α
2
,α
3
线性表示. 方法二 因为向量组α
1
,α
2
,α
3
线性相关,故存在不全为零的数k
1
,k
2
,k
3
,使得k
1
α
1
+k
2
α
2
+k
3
α
3
=0,其中必有k
1
≠0.否则,若k
1
=0,则k
2
,k
3
不全为零,使k
2
α
2
+k
3
α
3
=0.即α
2
,α
3
线性相关,进而向量组α
2
,α
3
,α
4
线性相关,与已知矛盾.于是k
1
≠0.因此有 [*] 即α
1
可由α
2
,α
3
线性表示. (2)α
4
不能由α
1
,α
2
,α
3
线性表示. 方法一 若α
4
能由α
1
,α
2
,α
3
线性表示,不妨设 α
4
=k
1
α
1
+k
2
α
2
+k
3
α
3
由(1)知α
1
能由α
2
,α
3
线性表示,不妨设α
1
=l
2
α
2
+l
3
α
3
,代入上式整理,得到 α
14
=(k
1
l
2
++k
2
)α
2
+(k
1
l
3
+k
3
)α
3
即α
4
可由α
2
,α
3
线性表示,从而α
2
,α
3
,α
4
线性相关,与已知矛盾.因此,α
4
不能由α
1
,α
2
,α
3
线性表示. 方法二 因为α
1
,α
2
,α
3
线性相关,R(α
1
,α
2
,α
3
)﹤3.又因α
2
,α
3
,α
4
线性无关,所以R(α
1
,α
2
,α
3
,α
4
)≥3.因此R(α
1
,α
2
,α
3
)﹤R(α
1
,α
2
,α
3
,α
4
),进而α
4
不能由α
1
,α
2
,α
3
线性表示.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Cyv4777K
0
考研数学一
相关试题推荐
函数f(x)=(x-x3)sinπx的可去间断点的个数为
n阶矩阵A和B具有相同的特征值是A和B相似的()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设a>0为常数,则()
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
要使都是线性方程组AX=0的解,只要系数矩阵A为
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用上题的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:
设分块矩阵是正交矩阵,其中A、C分别为m,n阶方阵,证明:A、C均为正交矩阵,且B=0.
随机试题
基金销售机构的主要工作包括()。Ⅰ.宣传推介基金Ⅱ.发售基金份额Ⅲ.办理基金份额申购和赎回Ⅳ.办理基金份额登记
望形神的改变对诊断疾病有重要的参考作用,若头晕困倦,面色苍白,肢冷汗出,甚则昏不知人,多为( )
在经济活动中,因()产生的经济关系,属经济管理关系。
信达公司是一家上市公司,2015年发生了下列有关交易或事项:(1)信达公司于2015年6月10日购入乙公司股票1000万股作为可供出售金融资产核算,每股购入价为10元,另支付相关税费20万元。2015年6月30日,该股票的收盘价为每股8元,201
(2018年)2018年年初,某公司购置一条生产线,有以下四种方案。方案一:2020年年初一次性支付100万元。方案二:2018年至2020年每年年初支付30万元。方案三:2019年至2022年每年年初支付24万元。方案四:2020年至2024年每
受到国家地理标志产品保护,拥有亚洲最大的生产基础的周边特色水果是()。
针对邻里纠纷引起的情节较轻的打架斗殴,根据治安管理处罚法,下列说法正确的是()。
从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
关于软件测试过程,请回答以下问题。应当如何正确选取过程模型?
设数据集合为D={1,2,3,4,5}。下列数据结构B=(D,R)中为非线性结构的是()。
最新回复
(
0
)