首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
admin
2019-07-01
67
问题
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t
2
f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|
x=2
=2/9的解.
选项
答案
由题设,旋转体体积应为π∫
1
t
f
2
(x)dx,则 [*] 两边对t求导,得f
2
(t)=1/3[2tf(t)+t
2
f
’
(t)], 即t
2
f
’
(t)-3f
2
(t)+2tf(t)=0. [*] 又由已知f(2)=2/9,则可解出C=-1,从而f(t)=t/(1+t
3
),所以y=f(x)=x/(1+x
3
)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5Fc4777K
0
考研数学一
相关试题推荐
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵.求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
设λ1,λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记f(X)=,X∈Rn,X≠0证明:λ1≤f(X)≤λ,,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设则
一批矿砂的4个样品中镍含量测定为(%):3.25,3.26.3.24.3.25.设测定值总体服从正态分布。问在α=0.01下能否接受假设:这批矿砂镍含量的均值为3.26.(t0.975(3)=5.8409,下侧分位数).
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
函数F(χ,y)=是否可以是某随机变量(X,Y)的分布函数?为什么?
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
求微分方程的通解,并求满足y(1)=0的特解.
函数f(x,y)=exy在点(0,1)处带佩亚诺余项的二阶泰勒公式是()
设y=f(x)在区间(a,b)上可微,则下列结论中正确的个数是()①x0∈(a,b),若f’(x0)≠0,则△x→0时,与△x是同阶无穷小。②df(x)只与x∈(a,b)有关。③△y=f(x+△x)-f(x),则dy≠△y。④△x→0时,d
随机试题
欲与大叔,臣请事之。事:
It’sessentialthateverychild______thesameeducationalopportunities.
人流负压吸宫时预防子宫穿孔的方法是()
有关无痛注射,正确的叙述是
下列不属于医院感染的是
A.不小于5厘米B.不小于10厘米C.不小于15厘米D.不小于20厘米E.不小于30厘米药品与墙、屋顶(房梁)的间距()
本节有关发票的犯罪罪名是:
某一中学有许多学生都有非常严重的学业问题,该校的教导主任组建了一委员会来研究这个问题。委员会的报告显示,那些在学业上有问题的学生,是因为他们在学校的运动项目上花了大量的时间,而在学习上花的时间太少。于是教导主任就禁止那些所有在学习上有问题的学生从事他们以前
美国国防部安全准则规定的安全级别中,等级最高的是______。
Inthelate1800’s,UnitedStatespainterThomasEakins(develop)a(broad),powerfulRealist(stylethat)became(almost)expre
最新回复
(
0
)