首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T, (Ⅰ)a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其余向
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,-1,-3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T, (Ⅰ)a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其余向
admin
2020-04-09
57
问题
α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,-1,-3)
T
,α
4
=(0,0,3,a)
T
,β=(1,b,3,2)
T
,
(Ⅰ)a取什么值时α
1
,α
2
,α
3
,α
4
线性相关?此时求α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出。
(Ⅱ)在α
1
,α
2
,α
3
,α
4
线性相关的情况下,b取什么值时β可用α
1
,α
2
,α
3
,α
4
线性表示?写出一个表示式。
选项
答案
两个小题都关系到秩,α
1
,α
2
,α
3
,α
4
线性相关→r(α
1
,α
2
,α
3
,α
4
)<4;β可用α
1
,α
2
,α
3
,α
4
线性相关→r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
),因此应该从计算这两个秩着手,以α
1
,α
2
,α
3
,α
4
,β为列向量构造矩阵(α
1
,α
2
,α
3
,α
4
,β),然后用初等行变换把它化为阶梯形矩阵:(α
1
,α
2
,α
3
,α
4
,β) [*]。 (Ⅰ)r(α
1
,α
2
,α
3
,α
4
)<4→a=3*α
1
,α
2
,α
3
是α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且α
4
=-6α
1
+6α
2
-3α
3
; (Ⅱ)r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=3,则b=2,β=-7α
1
+8α
2
-3α
3
。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/C2x4777K
0
考研数学三
相关试题推荐
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=l,2,3,又设X=max{ξ,η},Y=min{ξ,η}。求E(X)。
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=l,2,3,又设X=max{ξ,η},Y=min{ξ,η}。写出二维随机变量(X,Y)的分布律;
设A=(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Ax=b有无穷多解,并求其通解。
设f(x)在区间[0,1]上可导,f(1)=证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
证明:方程x5+x-1=0只有一个正根.
某箱装有100件产品,其中一、二和三等品分别为80,10和10件,现在从中随机抽取一件,记i=1,2,3。试求:随机变量X1与X2的联合分布;
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则未知数t=________
设一阶非齐次线性微分方程yˊ+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=________.
随机试题
下列各项中,属于营业税扣缴义务人的有()。(2001年)
肾盂肾炎最常见的感染途径是
对于施工经营活动中剩余的物资要( )。
企业盘盈的固定资产,应通过“待处理财产损溢”科目核算。()
简述性格的基本特性。
(1)预订机票(2)接到电话(3)留了下来(4)改变主意(5)寄发行李
债券的价值由什么决定?为什么?
下列判断正确的是()。
Shelovespartiessomuchthatsheisalwaysthelast(leave)______.
Notonly____________(他向我收费过高),buthedidn’tdoagoodrepairjobeither.
最新回复
(
0
)