首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2016-09-12
90
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A 的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]X=0得ξ
1
=[*];λ
2
=a时,由(aE-A)X=0得ξ
2
=[*] ;λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
=[*] (2)当a=0时,λ
1
=λ
3
=1,因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当a=[*]的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/AGt4777K
0
考研数学二
相关试题推荐
设b>a>e,证明:ab>ba.
设n为正整数,证明
设∫0y.
设f(x)是[0,1]上的连续函数,证明:∫0πxf(sinx)dx=∫0πf(sinx)dx并由此计算.
一商家销售某种商品的价格满足关系p=7-0.2x(万元/吨),x为销售量(单位:吨),商品的成本函数是C=3x+1(万元)t为何值时,政府税收总额最大。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f"(x)|≤b,其中a.b都是非负常数,c是(0,1)内任意一点.写出点c处带拉格朗日型余项的一阶泰勒公式.
设D是xOy平面上以(1,1)(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则(xy+cosx·siny)dxdy=________。
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
设函数f(x)在[0,1]上具有二阶导数f"(x)≤0,试证明:∫01f(x2)dx≤
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
随机试题
患者平素性急易怒,时有胁胀,近日胁胀加重,伴食欲不振,食后腹胀,便溏,舌苔薄白,脉弦。其证候是
具有散瘀解毒消痈功效的药物是
同一构件中相邻纵向受力钢筋的绑扎搭接接头宜相互错开。绑扎搭接接头中钢筋的横向净距不应小于钢筋直径,且不应小于( )mm。
按作用对象划分,教育功能分为________和_____________。
Alandfreefromdestruction,pluswealth,naturalresources,andlaborsupply—allthesewereimportantfactors,inhelpingEngl
简述概念、变量和指标的异同。(北师2010年研;江西财大2007年研)
机器设备的鉴定包括()。(中央财经大学,2011)
创造力、凝聚力和战斗力
设n阶矩阵A的元素全为1,则A的n个特征值是_________.
Ballroomdancingusedtobeseenassomethingrather【T1】________thatoldpeoplemightdo.Forthepastfiveyearsthough,the【T2
最新回复
(
0
)