首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则( ).
[2003年] 设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则( ).
admin
2021-01-19
59
问题
[2003年] 设向量组(Ⅰ):α
1
,α
2
,…,α
r
可由向量组(Ⅱ):β
1
,β
2
,…,β
s
线性表示,则( ).
选项
A、当r<s时,向量组(Ⅱ)必线性相关
B、当r>s时,向量组(Ⅱ)必线性相关
C、当r<s时,向量组(Ⅰ)必线性相关
D、当r>s时,向量组(Ⅰ)必线性相关
答案
D
解析
利用命题2.3.1.4(1)判别.
解一 由命题2.3.1.4(1)知,仅(D)入选.
解二 由于向量组线性相关的一个充要条件是其秩小于向量组所含向量的个数,上例只需根据题设条件考察哪一个选项的向量组的向量个数大于其秩即可.向量组(Ⅰ)可由向量组(Ⅱ)线性表示,则秩(I)≤秩(Ⅱ)<s.因而当r>s时,必有秩(I)<r,即向量组(I)的秩小于其所含向量的个数,此时向量组(I)必线性相关.仅(D)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/9j84777K
0
考研数学二
相关试题推荐
设(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
证明:对任意的χ,y∈R且χ≠y,有.
设n阶非零实方阵A的伴随矩阵为A*,且A*=AT.证明|A|≠0.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。计算并化简PQ;
在椭圆的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.
设函数f(x)在x=x0的某邻域U内存在连续的二阶导数.(I)设当h>0,(x0-h)∈U,(x0﹢h)∈U,恒有f(x0)
求心形线r=a(1+cosθ)(常数a>0)的全长.
(2013年)设曲线L的方程为y=(1≤χ≤e)(Ⅰ)求L的弧长;(Ⅱ)设D是由曲线L,直线χ=1,χ=e及χ轴所围平面图形.求D的形心的横坐标.
设f(x)=∫0sinxsin2tdt,g(x)=∫02xln(1+t)dt,则当x→0时,f(x)与g(x)相比是()
随机试题
最早提出社区概念并作了经典阐述的社会学家是【】
依米丁:
闭经的原因是
A.全腹剧痛B.右上腹持续疼痛C.转移性右下腹痛D.上腹周期性、节律性疼痛E.上腹部周期性、无节律性疼痛急性阑尾炎腹痛的特点是()
某省某药品经营企业为牟取利润,将其《药品经营许可证》租赁给另一药品经营企业,因被相关部门及时发现,并未造成严重影响,对该药品经营企业的处罚,正确的是
做混凝土材料的应力-应变全曲线的试验,常在( )试验中要用到。
随着国际反腐合作深化,外逃腐败分子难逃________的命运。填入画横线部分最恰当的一项是:
对幼儿时间定向上起决定作用的是()。
在数据库设计中,将E-R图转换成关系数据模型的过程属于()。
以下()不属于对象的基本特征。
最新回复
(
0
)