首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=x0的某邻域U内存在连续的二阶导数. (I)设当h>0,(x0-h)∈U,(x0﹢h)∈U,恒有 f(x0)
设函数f(x)在x=x0的某邻域U内存在连续的二阶导数. (I)设当h>0,(x0-h)∈U,(x0﹢h)∈U,恒有 f(x0)
admin
2019-06-29
68
问题
设函数f(x)在x=x
0
的某邻域U内存在连续的二阶导数.
(I)设当h>0,(x
0
-h)∈U,(x
0
﹢h)∈U,恒有
f(x
0
)<
f(x
0
﹢h)﹢f(x
0
-h)], (*)
证明f
”
(x
0
)≥0;
(Ⅱ)如果
”
(x
0
)﹥0,证明必存在h﹥0,(x
0
-h)∈U,(x
0
﹢h)∈U,使(*)式成立.
选项
答案
(I)由条件,当h>0充分小,(x
0
±h)∈U,有 f(x
0
﹢h)-f(x
0
)﹢f(x
0
﹣h)-f(x
0
)>0. 则由拉格朗日中值定理,有 f
’
(ξ
2
)h﹢f
’
(ξ
1
)(-h)﹥0, 其中x
0
-h<ξ
1
<x
0
﹤ξ
2
<x
0
﹢h.又因为h>0,得 f
’
(ξ
2
)-f
’
(ξ
1
)>0. 再在区间[ξ
1
,ξ
2
]上用拉格朗日中值定理,有 f
”
(ξ)(ξ
2
-ξ
1
)﹥0, 其中x
0
-h<ξ
1
<ξ
2
<x
0
﹢h.由此推得f
”
(ξ)>0.再令h→0,得ξ→x
3
,并且得f
”
(x
0
)≥0. 证毕. (Ⅱ)由题设f
”
(x)在x=x
0
的邻域U内连续,且f
”
(x
0
)>0,故存在h>0,使x
0
-h,x
0
﹢h][*]U且在区间[x
0
-h,x
0
﹢h]内f
”
(x)>0.将f(x)按(x-x
0
)的幂展开的泰勒公式,有 f(x)=f(x
0
)﹢f
’
(x
0
)(x-x
0
)﹢[*]f
”
(ξ)(x-x
0
)
2
>f(x
0
)﹢f
’
(x
0
)(x-x
0
), 其中ξ∈(x,x
0
)(或(x
0
,x)),x∈[x
0
-h,x
0
﹢h,x≠x
0
.取x=(x
0
﹢h)∈U,得 f(x
0
﹢h)﹥f(x
0
)﹢f
’
(x
0
)h; 取x=(x
0
-h)∈U,得 f(x
0
-h)>f(x
0
)-f
’
(x
0
)h. 从而有 f(x
0
﹢h)﹢f(x
0
-h)>2f(x
0
), 即f(x
0
)<[*][f(x
0
﹢h)﹢f(x
0
-h)],故(*)式成立.证毕.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/mOV4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,|A|=3,且满足|A2+2A|=0,|2A2+A|=0,则A*的特征值是_______.
二次型f(x1,x2,x3)=(x1+x2)2+(x2一x3)2+(x3+x1)2的秩为_________.
已知三维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k____________.
设A=有二重特征根,则a=________。
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数F(x)=在x=0处连续,则常数A=_______.
连续函数f(x)满足f(x)=3∫0x(x-t)dt+2,f(x)=_______.
设f(x)为连续函数,且满足∫01f(xt)dt=f(x)+xsinx,则f(x)=_______.
设向量组α1(2,1,1,1),α2(2,1,a,a),α3=(3,2,1,a),α4=(4,3,2,1)线性相关,且a≠1,则a=_______.
求不定积分
设α1,α2,…,αs线性无关,βi=αi+αi+1,i=1,…,s-1,βs=αs+α1.判断β1,β2,…,βs线性相关还是线性无关?
随机试题
在韦纳提出的归因理论中,不稳定的、可控的因素是()。
对脆性材料()不能进行压力加工。
明确将咳嗽分为外感、内伤两大类的是哪一部书()
我国的政策性银行有()。
某项固定资产原值为8万元,无残值,折旧年限为5年,若用双倍余额递减法计提折旧,则第4年应提折旧额为()元。
()是证券结算的一项基本原则,可以将证券结算中的违约交收风险降低到最低程度。
本月增值税销项税额为( )元。本月应缴增值税为( )元。
劳动资料亦称__________,是人们在生产劳动过程中用来改变或影响劳动对象的一切物质资料和物质条件。劳动资料包括十分复杂的内容,_______________是劳动资料的主要内容,是生产力发展水平的主要标志。
在窗体上画一个文本框(名称为Text1)和一个标签(名称为Label1),程序运行后,在文本框中每输入一个字符,都会立即在标签中显示文本框中字符的个数。以下可以实现上述操作的事件过程是
A、Shestartedcollectingstampsfromherchildhood.B、Agoodstampcollectioncanbebuiltinashorttime.C、Araresetofstam
最新回复
(
0
)