首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx=ax12+2x22一2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12. 求a,b的值;
设二次型f(x1,x2,x3)=xTAx=ax12+2x22一2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12. 求a,b的值;
admin
2016-01-11
68
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax=ax
1
2
+2x
2
2
一2x
3
2
+2bx
1
x
3
(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12.
求a,b的值;
选项
答案
二次型f的矩阵为[*]设A的特征值为λ
i
(i=1,2,3).由题设,有λ
1
+λ
2
+λ
3
=α+2+(一2)=1,[*] 解得a=1,b=2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8v34777K
0
考研数学二
相关试题推荐
设A是m×n阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是().
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A=方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交矩阵Q。使得QTAQ为对角阵.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设f(x)是连续函数,F(x)是f(x)的原函数,则().
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
设某企业生产一种产品,其成本C(Q)=-16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
设f(x,y)为连续函数,且f(x,y)=xf(x,y)dxdy+y2,则f(x,y)=().
随机试题
朱熹认为“德”、“礼”、“政”、“刑”,相为始终,循环运动,正确的路线是
商务谈判胜负的决定性因素在于()
外科感染的特点,下列哪项是错误的?
A.MaslowB.NANDAC.Majoryc0rdonD.AlfaroE.Holmes人类基本需要层次论的是
工程设计概算由()。
根据现行财税制度,贷款还本的资金来源主要有( )。
(2014年)大华股份有限公司(以下简称“大华公司”)于2006年在上海证券交易所上市,普通股总数为5亿股,甲、乙分别持有大华公司31%和25%的股份。截至2013年年底,大华公司净资产额为10亿元,最近3年可分配利润分别为3000万元、2000万元和10
建立现代企业制度是国有企业改革的方向。()
广义相对论发表以来,一直是最成功的引力理论,已经__________了无数次的天文观测和各种实验的检验。但是几乎所有这些都是在弱引力场下,检验爱因斯坦引力和牛顿引力的微小差距。如果想使爱因斯坦引力的效应比较明显,则需要在强引力场中才能发生,而这方面的检验还
Therearesomeearthphenomenayoucancounton,butthemagneticfield,somedayisnotofthem.Itfluctuatesinstrength,drif
最新回复
(
0
)