首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
admin
2019-02-01
89
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)
T
,则A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
。
B、α
1
+α
2
,α
2
+α
3
,α
1
+α
3
。
C、α
2
,α
3
,α
4
。
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
。
答案
C
解析
方程组Ax=0的基础解系只含一个解向量,所以四阶方阵A的秩,r(A)=4—1=3,则其伴随矩阵A
*
的秩r(A
*
)=1,于是方程组A
*
x=0的基础解系含有三个线性无关的解向量。又A
*
(α
1
,α
2
,α
3
,α
4
)=A
*
A=|A|E=D,所以向量α
1
,α
2
,α
3
,α
4
都是方程组A
*
x=0的解。将(1,0,2,0)
T
。代入方程组AX=0可得α
1
+2α
3
=0,这说明α
1
可由向量组α
2
,α
3
,α
4
线性表出,而向量组α
1
,α
2
,α
3
,α
4
的秩等于3,所以向量组α
2
,α
3
,α
4
必线性无关。所以选c。事实上,由α
1
+2α
3
=0可知向量组α
1
,α
2
,α
3
线性相关,选项A不正确;显然,选项B中的向量都能被α
1
,α
2
,α
3
线性表出,说明向量组α
1
+α
2
,α
2
+α
3
,α
1
+α
3
线性相关,选项B不正确;而选项D中的向量组含有四个向量,不是基础解系,所以选型D也不正确。
转载请注明原文地址:https://www.kaotiyun.com/show/8gj4777K
0
考研数学二
相关试题推荐
计算.
已知方程组是同解方程组,试确定参数a,b,c.
计算积分:已知f(x)=求∫2n2n+2(x一2n)e一xdx,n=2,3,….
设f(x,y)=,其中D为正方形域0≤x≤1,0≤y≤1.
已知X=AX+B,其中A=,求矩阵X.
求微分方程y’’-y=4cosx+ex的通解.
设f(x),g(x)(a<x<b)为大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<bb时,有().
设f(χ)在[a,b]有二阶连续导数,M=|f〞(χ)|,证明:
设有一半径为R长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
设数列xn与yn满足=0,则下列断言正确的是
随机试题
一齿数z=50、分锥角8=45°的锥齿轮当量齿数zv=__________。
每届政协全国委员会的参加单位、委员名额和人选及界别设置,经_________同意后,由常务委员会协商决定。
可引起疮痈、神昏的外邪是
A.Zeta电位降低B.分散相比连续相密度大C.微生物、光、热、空气等作用D.乳化剂失去乳化作用E.乳化剂性质改变哪项造成下面是我质量问题转相()。
委托人与监理人签订了委托监理合同后,具有的权利包括()。
依据《金融期货投资者适当性制度操作指引》的规定,自然人投资者本人不必参加知识测试,可以由他人替代。()
阅读材料回答下列几题:作为一种文化载体的民间传说或神话并非完全出于古人的想象,而往往以某些史前事件为事实依据。“女娲补天”神话的起源应是源于远古时期一次影响深远的灾害。最近,中南民族大学罗漫提出,著名的神话“女娲炼五色石以补苍天”,是一则典型的以
x=φ(y)是y=f(x)的反函数,f(x)可导,且f’(x)=,f(0)=3,求φ"(3).
下列选项中,关于城域网建设的描述不正确的是()。
Youshouldspendabout20minutesonQuestions14-26,whicharebasedonReadingPassage2below.HowWellDoWeConcentrate?A
最新回复
(
0
)