首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2016-06-25
70
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。
证明:对任何a∈[0,1],有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
令F(a)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1),a∈[0,1],则 F’(a)=g(a)f’(a)一f’(a)g(1)=f’(a)[g(a)一g(1)]. 因为x∈[0,1]时,f’(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f’(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(1)g(1) =f’[g(x)f(x)]’dx一f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以,F(a)≥F(1)=0,即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1)≥0, 即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pnt4777K
0
考研数学二
相关试题推荐
设f(x)在[-a,a](a>0)上有四阶连续的导数,且存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[-a,a].使得
设a>0,x1>0,且定义xn+1=xn存在并求其值.
若(X,Y)服从二维正态分布,则:①X,Y一定相互独立;②若ρxy=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任意线性组合服从一维正态分布。上述几种说法中正确的是().
设随机变量X,Y都是正态变量,且X,Y不相关,则().
设随机变量X与Y的相关系数为1/3,且E(X)=0,E(Y)=1,E(X2)=4,E(Y2)=10,则E[(X+Y)2]________.
求下列不定积分。
求不定积分.
设f(x),ψ(x)在点x=0的某邻域内连续,且当x→0时,f(x)是ψ(x)的高阶无穷小,则当x→0时,∫0xf(t)sintdt是∫0xtψ(t)dt的________。
估计积分的值。
证明数列…的极限存在,并求该极限。
随机试题
患者小便不甚赤涩,但淋漓不已,时作时止,遇劳即发,腰膝酸软,神疲乏力,少腹坠胀,舌质淡,脉虚弱,其治法是
注册房地产经纪人被注销注册的情形有:()
以下哪种材料无需测定其放射性核素限量?
某施工单位承接了北方沿海地区某高速公路B合同段施工任务,该段有一座36m×40m的预应力混凝土简支箱梁桥,合同工期为15个月;采用长度为40~50m、直径为φ1.5m的桩基础,桥位处地层土质为亚黏土;下部结构为圆柱式墩、直径为φ1.3m,柱顶设置盖梁,墩柱
背景高新区某8层框架结构办公楼工程,采用公开招标的方式选定A公司作为施工总承包。施工合同中双方约定钢筋、水泥等主材由业主供应,其他结构材料及装饰装修材料均由总承包负责采购。施工过程中,发生如下事件:事件一:钢筋第一批进场时,供货商只提供了出厂合格证,
甲公司为增值税一般纳税人,适用的增值税税率为17%,2016年6月25日收到通知.乙公司5月10从甲公司所购B商品不符合合同规定的质量标准,要求甲公司在价格上给予10%的销售折让。该批商品总售价为600万元,增值税税额为102万元,总成本为500万元,
科学体育锻炼有助于发展学生体能,下列说法不正确的是()。
下列叙述中,错误的是()。
WhenMelissaMahanandherhusbandvisitedtheNetherlands,theyfeltimprisonedbytheirtourbus.Itforcedthemtoseetheci
钓鱼的诱人之处就在于目标虽然捉摸不定却又可望可及。(elusive)
最新回复
(
0
)