首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,五)利用代换y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解
(1998年试题,五)利用代换y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解
admin
2019-04-17
71
问题
(1998年试题,五)利用代换
y
’’
cosx一2y
’
sinx+3ycosx=e
x
化简,并求出原方程的通解
选项
答案
题设所给方程为变系数方程,可由代换[*]将其化为关于u的二阶微分方程再求解,应先由[*]求得y
’
,y
’’
与u
’
,u
’’
的关系如下,将y=usecx两边对x求导,得y
’
=u
’
8ecx+secx.tanx,(1)再由(1)式两边对x求导,得y
’’
=u
’’
secx+2u
’
se
’
cx.tanx+usecx.tan
2
x+usec
3
x(2)将式(1),式(2)代入原方程,得u
’’
+4u=e
x
,该方程是关于u的二阶常系数线性非齐次方程,先求其相应的齐次方程的通解,由特征方程λ
2
+4=0求得特征值为λ
1
=2i,λ
2
=一2i,从而齐次方程通解为y=C
1
cos2x+C
2
sin2x,设方程特解为y
*
=Ae
x
,代回方程u
’’
+4u=e
x
,得[*]因此[*],因此非齐次方程通解为[*]其中C
1
,C
2
为任意常数.由代换[*]原方程通解为[*]
解析
本题在化简原方程时,也可由代换u=ycosx两边对x求导,得u
’
=y
’
cosx—ysinx,(3)再由式(3)两边对x求导,得u
’’
=y
’’
cosx一2y
’
sinx—ycosx(4)式(3),式(4)与式(1),式(2)是等价的,代入原方程都可得出同样的方程u
’’
+4u=e
x
转载请注明原文地址:https://www.kaotiyun.com/show/8DV4777K
0
考研数学二
相关试题推荐
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
设u=,其中f(s,t)二阶连续可偏导,求du及
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
证明:r(A+B)≤r(A)+r(B).
已知齐次线性方程组其中≠0,试讨论a1,a2,…,an和b满足何种关系时.(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
曲线(x-1)3=y2上点(5,8)处的切线方程是________.
设f(χ,y)二阶连续可偏导,g(χ,y)=f(eχy,χ2+y2),且f(χ,y)=1-χ-y+o(),证明:g(χ,y)在(0,0)处取极值,并判断是极大值还是极小值,求极值.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0。
求下列不定积分:(Ⅰ)∫arcsinx.arccosxdx;(Ⅱ)∫x2sin2xdx;(Ⅲ)
随机试题
十二正经中,有两支别络的经脉是()
具体来说,如果城市规划规定了该宗土地为居住用途,即使从其()来看,适合用作商业用途,而且能够获得批准。
下列选项中,不属于预制取水头部的制作质量验收主控项目的是()。
某公司2008年销售收入为1亿元,销售成本为9000万元,2008年期初存货为500万元,2008年期末存货为600万元,则该公司2008年存货周转天数为()
替代效应与价格的变动方向是()。
世界上最早的一部教育文献是()。
从四个选项选择最合适的一个填入问号处,使之呈现一定的规律性:()
中国历史上有几次重要的饮食的改变:火的发明使用,让直立猿人可以熟食肉类食物;农业的出现,让人类由采集食物变为栽培食物;面食的输入,使中国饮食文化由“粒食文化”进入“粉食文化”;美洲农作物玉米、马铃薯等的传人,提供了粮食的重要后盾;第五次则是美国速食快餐的进
An80-year-oldmanfromCincinnatiinAmericaismakinglegalhistorybysuingdoctorswhosavedhiswife.EdwardWinterhaswit
Readthearticlebelowabouttheneedforlanguagetrainingintheinternationalmarketplaceandthequestionsontheoppositep
最新回复
(
0
)