首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
admin
2017-07-10
87
问题
确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示。
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
)。因为β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,所以r(A)<3(若r(A)=3,则任何三维向量都可以由α
1
,α
2
,α
3
线性表示),从而 [*] 即a=一2或1。当a=一2时 [*] 考虑线性方程组Bx=α
2
。因为系数矩阵的秩为2,增广矩阵的秩为3,所以线性方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表出,这与题中的已知条件矛盾,故a=一2不合题意。 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1),则α
1
=α
2
=α
3
=β
1
+0.β
2
+0.β
3
,说明α
3
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示;而方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解(系数矩阵的秩为1,增广矩阵的秩为2),所以α
2
不能由α
1
,α
2
,α
3
线性表示。故a=1符合题意。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xet4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
[*]
[*]
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
在yOx面上,求与A(3,1,2),B(4,-2,-2)和C(0,5,1)等距的点.
某商品的价格P与需求量Q的关系为P=10-Q/5(1)求需求量为20及30时的总收益R、平均收益R及边际收益Rˊ;(2)Q为多少时总收益最大?
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
针对蝶筛软骨结合、蝶骨间软骨结合和蝶枕软骨结合的生长发育,下列描述不正确的是
甲公司受乙公司委托为其印制新年贺卡,两公司在合同中约定了贺卡的形式、图案、材质等。后甲公司将购买材质的任务交由丙公司完成,但丙公司购买来的材质并不符合甲、乙公司的约定。关于本案,以下说法正确的是:()
水泥的强度等级为42.5级,则该水泥的()抗压强度应不小于42.5MPa。
纳税人采取邮寄方式办理纳税申报的,应当使用统一的纳税申报专用信封,并以邮政部门收据作为申报凭证。()
从迁移的观点来看,“温故而知新”属于()。
下列关于线性表特点的叙述,正确的有()。
关于我国的农民工现象,下列说法错误的是()。
根据下列材料回答问题。在2008年8月8日至24日奥运会期间,北京市的空气质量不仅天天达标,而且有10天达到一级,全面兑现了对奥运会空气质量的承诺。下图是2008年1-8月北京市大气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最
简述桑代克的学习定律。
CanTonyBlairSavetheWorldofBooks?[A]AtthebeginningofAJourney,TonyBlairboaststhathehas"thesoulofarebel".L
最新回复
(
0
)