首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2018-11-20
71
问题
已知平面上三条直线的方程为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组 [*] 有唯一解,即系数矩阵的秩=增广矩阵的秩=2. [*] 则方程组系数矩阵的秩=r(A),增广矩阵的秩=r(B),于是l
1
,l
2
,l
3
交于一点[*]r(A)=r(B)=2. 必要性 由于r(B)=2,则|B|=0.计算出 |B|=一(a+b+c)(a
2
+b
2
+c
2
一ab一ac—bc) =[*](a+b+c)[(a一b)
2
+(b一c)
2
+(c一a)
2
]. a,b,c不会都相等(否则r(A)=1),即(a一b)
2
+(b—c)
2
+(c一a)
2
≠0.得a+b+c=0. 充分性 当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(A)=2,就可得到 r(A)=r(B)=2. 用反证法.若r(A)<2,则A的两个列向量线性相关.不妨设第2列是第1列的λ倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7fW4777K
0
考研数学三
相关试题推荐
设X,Y为两个随机变量,P(X≤1,Y≤1)=,P(X≤1)=P(y≤1)=,则P{min(X,Y)≤1)=().
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
向量组α1,α2,…,αm线性无关的充分必要条件是().
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
用变量代换x=sint将方程(1一x2)一4y=0化为y关于t的方程,并求微分方程的通解.
设A,B为两个随机事件,则P{(+B)(A+B)}=________.
设k为常数,方程kx一+1=0在(0,+∞)内恰有一根,求k的取值范围.
设fn(x)=x+x2+…+xn(n≥2).证明方程fn(x)=1有唯一的正根xn;
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)=f(x)=0在(0,1)内有根.
设A=已知线性方程组Ax=b存在两个不同的解。(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解。
随机试题
Z4012型台钻主轴的最高转速和最低转速分别是4100r/min和480r/min。()
《雷雨》在结构上主要采用了()
甲的汇票遗失,向法院申请公示催告。公告期满后无人申报权利,甲申请法院作出了除权判决。后乙主张对该票据享有票据权利,只是因为客观原因而没能在判决前向法院申报权利。乙可以采取哪种法律对策?()
某大型工厂在招聘安保人员时,明知许多应聘人员是逃离部队的军人,仍然招聘了大量逃离的军人。该工厂的行为构成:()
面点加工坊中投放小围裙的数量代表加工坊的人数,没有小围裙就表示加工坊的人满了,幼儿不能再进去。教师采用的区角活动指导策略是()。
2014年一季度全省水产品产量比2012年同期相比()。
系统论认为系统的特点有
毛泽东思想和邓小平理论是马克思主义中国化的两大理论成果。贯穿这两大理论成果始终,并体现在两大成果各个基本观点中的世界观和方法论的基础是()
曲线y=+ln(1+ex)的渐近线的条数为()
Thefailureofanoperationforappendicitishasshakenmy(believe)______indoctors.
最新回复
(
0
)