首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元实二次型 f(x1,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xx-1+an-1xn)2+(xn+anx1)2, 其中a1,…,an均为实数。试问:当a1,…,an满足何种条件时,二次型f是正定的。
设n元实二次型 f(x1,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xx-1+an-1xn)2+(xn+anx1)2, 其中a1,…,an均为实数。试问:当a1,…,an满足何种条件时,二次型f是正定的。
admin
2018-01-26
92
问题
设n元实二次型
f(x
1
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
x-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,
其中a
1
,…,a
n
均为实数。试问:当a
1
,…,a
n
满足何种条件时,二次型f是正定的。
选项
答案
依题意知,对任意的x
1
,…,x
n
,均有f≥0,易知当且仅当下列齐次线性方程组只有零解时,二次型是正定的。 [*] 而当且仅当系数矩阵的行列式非零时,此齐次线性方程组只有零解,即 [*] =1+(-1)
n+1
a
1
…a
n
≠0, 所以,当a
1
…a
n
≠(-1)
n
时,二次型f为正定二次型。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7cr4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明:(1)存在,使得f(η)=η;(2)对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
设=A,证明:数列{an}有界.
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n.
微分方程y’’+2y’+2y=e-xsinx的特解形式为()
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.求D的面积A;
曲线y=的斜渐近线方程为_________.
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分。
求椭球面x2+2y2+z2=22上平行于平面x-y+2z=0的切平面方程。
随机试题
奉献社会是职业道德中的最高境界。
功能助阳益阴,兼可固涩下焦的药是
支气管哮喘典型的临床症状是
对于主控项目,其α、β值不宜超过( )。
组织进行招聘时,比较合适的做法是()。
某生产白酒的集体企业,1998年全年销售额1600万元,成本600万元,销售税金及附加460万元,按规定列支各种费用400万元。已知上述成本费用中包括新产品开发费80万元(该费用比上年实际发生额增长20%)、粮食白酒广告费支出50万元。该企业当年应纳企业
银行风险是指银行在经营过程中,由于各种不确定因素的影响,而使其()蒙受损失的可能性。
3,10,31,94,(),850。
A.利多卡因B.布比卡因C.阿替卡因D.普鲁卡因E.丁卡因目前在口腔颌面外科中应用最多的局部麻醉药物是()。
IrradiatingFoodIrradiatingfruits,vegetables,porkandchickentokillinsectsandbacteriahasbeenapprovedbytheFood
最新回复
(
0
)