首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,特征值是1,2,-1,相应的特征向量依次为α1=(a-1,1,1)T,α2=(4,-a,1)T,α3=(a,2,b)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系.
已知A是3阶实对称矩阵,特征值是1,2,-1,相应的特征向量依次为α1=(a-1,1,1)T,α2=(4,-a,1)T,α3=(a,2,b)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系.
admin
2019-05-14
61
问题
已知A是3阶实对称矩阵,特征值是1,2,-1,相应的特征向量依次为α
1
=(a-1,1,1)
T
,α
2
=(4,-a,1)
T
,α
3
=(a,2,b)
T
,A
*
是A的伴随矩阵,试求齐次方程组(A
*
+E)x=0的基础解系.
选项
答案
因为实对称矩阵不同特征值的特征向量相互正交,故 [*] 由|A|=-2,知A
*
的特征值是-2,-1,2.那么A
*
+E的特征值是-1,0,3. 又因A,A
*
,A
*
+E有相同的特征向量.于是(A
*
+E)α
2
=0α
2
2=0. 所以α
2
=(4,-1,1)
T
是齐次方程组(A
*
+E)x=0的基础解系.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5004777K
0
考研数学一
相关试题推荐
证明:当0<x<1时,.
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形,记为D,求(Ⅰ)D的面积A;(Ⅱ)D绕直线x=1所成的旋转体的体积V。
求微分方程xy"=y’+x2的通解。
设数列{an}满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2),s(x)是幂级数anx的和函数,(Ⅰ)证明:s"(x)一s(x)=0;(Ⅱ)求s(x)的表达式。
计算,其中∑为下半球面z=一的上侧,a为大于0的常数。
设A=,向量α=是矩阵A-1属于特征值λ0的特征向量,若|A|=-2,求a,b,c及λ0的值.
设f(χ)在(-∞,+∞)是连续函数,(Ⅰ)求初值的解y=φ(χ);(Ⅱ)求证y(χ)=∫0χφ(t)f(χ-t)dt是初值问题的解;(Ⅲ)求y〞+y′=f(χ)的通解.
设A=,(Ⅰ)若矩阵A正定,求a的取值范围;(Ⅱ)若a是使A正定的正整数,求正交变换化二次型χTAχ为标准形,并写出所用坐标变换.
设f(x)为非负连续函数,且满足f(x)∫0xf(x-t)dt=sin4x,求f(x)在[0,π/2]上的平均值.
设f(x)在[-π,π]上连续,且有f(x)=+∫-ππf(x)sinxdx,求f(x)。
随机试题
冷却水最好选用软水,即含盐分少的水,如雨水、雪水、自来水等。()
关于脑室引流术的护理正确的是()
可出现阵发性痉咳伴鸡鸣样回声的疾病是
Addison病最具特征性的表现是
A.X线检查B.数字化减影血管造影C.超声检查D.CT检查E.MRI检查诊断心脏和大血管病变最常用的检查方法是
男性,40岁,胸痛、反酸、烧心、嗳气2个月,胃镜检查食管黏膜未见明显异常。最有助于明确诊断的检查是
申请房地产开发类贷款的条件有()。
下列各项不属于民营企业组织形式的是()。
甲公司是一家煤矿企业,适用的增值税税率为13%。2×20年发生下列经济业务:(1)依据开采的原煤产量按月提取安全生产费,提取标准为每吨15元,假定每月原煤产量为10万吨。2×20年4月5日,经有关部门批准,该企业购入一批需要安装的用于改造和完善矿井运输的
中国经济的高速发展首先保证了居民获得幸福的物质因素。城乡居民收入稳步提升,居民身体素质、寿命都得到提高。在市场经济体制中,物质资源极大丰富,人们可以发挥自己的能动性,来获得最大的物质享受。城乡社会消费品零售总额稳步提升,说明居民的生活水平在提高,这些都是人
最新回复
(
0
)