首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).
[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).
admin
2021-01-25
92
问题
[2014年] 设α
1
,α
2
,α
3
是三维向量,则对任意常数k,l,向量α
1
+kα
3
,α
2
+α
3
线性无关是向量α
1
,α
2
,α
3
线性无关的( ).
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
记β
1
=α
1
+kα
3
,β
2
=α
2
+lα
3
,则
若α
1
,α
2
,α
3
线性无关,则[α
1
,α
2
,α
3
]为可逆矩阵,故秩
即β
1
=α
1
+kα
3
,β
2
=α
2
+lα
3
线性无关.
反之,设α
1
,α
2
线性无关,α
3
=0,则对任意常数k,l必有α
1
+kα
3
,α
2
+lα
3
线性无关,但α
1
,α
2
,α
3
线性相关,故α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的必要但非充分条件.仅(A)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/4wx4777K
0
考研数学三
相关试题推荐
设齐次线性方程组为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设某种元件的使用寿命X的概率密度为f(x;θ)=其中θ>0为未知参数.又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值.
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令求Z=U+X的分布函数FZ(z).
[2006年]设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数.求:Y的概率密度函数fY(y);
[2004年]设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令求二维随机变量(X,Y)的概率分布;
(95年)将函数y=ln(1-χ-2χ2)展成χ的幂级数,并指出其收敛区间.
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证:(I)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
(2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则
微分方程yˊˊ-2yˊ=x2+e2x+1由待定系数法确定的特解形式(不必求出系数)是_________.
任意一个三维向量都可以由α1=(1,0,1)T,α2=(1,一2,3)T,α3=(a,1,2)T线性表示,则a的取值为________。
随机试题
小赵是一名参加工作不久的大学生。他习惯使用Excel表格来记录每月的个人开支情况。2013年底小赵将每个月各类支出的明细数据录入了文件名为“Excel素材.xlsx”的工作簿文档中。根据下列要求帮助小赵对明细表进行整理和分析:将每月各类支出及总支出对应
罗西里尼的《罗马——不设防的城市》的电影风格是()
下列影响伤口愈合的因素有
用耳针治疗不寐可选择哪些穴位
狼疮性肾炎IgA肾病
杨某,男,35岁。因近日工作紧张,休息欠佳,双目肿痛,兼口苦,烦热,便秘,脉弦滑。针灸治疗以哪些经脉为主组成处方
《中共中央关于全面推进依法治国若干重大问题的决定》强调依法规范司法人员与当事人、律师、特殊关系人、中介组织的接触、交往行为。下列哪一项对此的表述是不正确的?()
下列进口货物,免征进口关税的有()。
高中“方程的根与函数的零点”(第一节课)设定的教学目标如下:①通过对二次函数图像的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系。②理解提出零点概念的作用,沟通函数与方程的关系。③通过对现实问题的分析,体会用函
Readingthepapersandlookingattelevisionthesedays,onecaneasilybepersuadedthatthehumanspeciesisonitslastlegs,
最新回复
(
0
)