首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f"(ξ)<0.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f"(ξ)<0.
admin
2019-01-23
51
问题
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’
+
(a)>0.证明:存在ξ∈(a,b),使得f"(ξ)<0.
选项
答案
[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4wM4777K
0
考研数学一
相关试题推荐
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于的概率P.
设X1,X2,…X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=aX12+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2。服从χ2分布,并求自由度m.
证明α1,α2,…αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
设A是m×n实矩阵,r(A)=n,证明ATA是正定矩阵.
设f(x)在(0,+∞)二阶可导且f(x),f’’(x)在(O,+∞)上有界,求证:f’(x)在(0,+∞)上有界.
已知(x一1)y’’一xy’+y=0的一个解是y1=x,又知y=ex一(x2+x+1),y*=一x2—1均是(x一1)y’’一xy’+y=(x一1)2的解,则此方程的通解是y=______·
设y1(x),y2(x)为二阶变系数齐次线性方程y’’+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
求星形线(a>0)所围区域的面积A.
求椭球面S:x2+y2+z2一yz一1=0上具有下列性质的点(x,y,z)的轨迹:过(x,y,z)的切平面与Oxy平面垂直.
一自动生产包装机包装食盐,每袋重量服从正态分布N(μ,σ2),任取9袋测得其平均重量为=99.078,样本方差为s2=1.1432,求μ的置信度为0.95的置信区间.
随机试题
现代物流商品质量管理的技术方法有几种。
为避免误差,问卷的题项用语要非常谨慎,简述在选择题项用语时应遵循的原则。
宫颈不典型增生、原位癌或浸润癌具有鉴别诊断价值的检查是
最可能的诊断是下列哪项治疗不妥
根据《建筑工程施工质量验收统一标准)中规定,对于一般项目α、β允许范围为( )。
在创设“春天”主题墙时,教师先设计了一面“春天大自然有什么变化”的问题墙,而后又呈现了幼儿户外寻找春天秘密的图片、作品等,这种环境创设是属于()创设。
阿尔迪、里德尔等德国超市折扣连锁店在全球食品涨价潮中逆市走俏。德国模式的折扣连锁店经营方式不同于普通超市、家庭店铺或法国特色的农民市场。它的店面一般仅有两三百平方米,过道狭窄,商品包装简单,80%以上的商品都是食品和饮料,其价格一般要比普通超市低30%到5
洋务运动、戊戌变法和辛亥革命,三者的相似因素是
给出在工作中心“WC1”或“WC2”工作,并且年龄大于30的职工编号,正确的语句是()。
Tousitseemssonaturaltoputupanumbrellatokeepthewateroffwhenitrains.Butactuallytheumbrellawasnotinvented
最新回复
(
0
)