首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是四阶矩阵,A*是A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
设A=(α1,α2,α3,α4)是四阶矩阵,A*是A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
admin
2018-04-08
68
问题
设A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,A
*
是A的伴随矩阵,若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可为( )
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
由Ax=0的基础解系只包含一个向量可知,r(A)=3,所以r(A
*
)=1,则A
*
x=0的基础解系中有三个线性无关的解。又由A
*
A=|A|E=0可知,α
1
,α
2
,α
3
,α
4
都是A
*
x=0的解,且A
*
x=0的极大线性无关组就是其基础解系。又
=α
1
+α
3
=0,所以α
1
,α
3
线性相关,故α
1
,α
2
,α
4
或α
2
,α
3
,α
4
为极大线性无关组,即基础解系,故应选D。
转载请注明原文地址:https://www.kaotiyun.com/show/3lr4777K
0
考研数学一
相关试题推荐
设随机向量(X,Y)的概率密度f(x,y)满足f(x,y)一f(-x,y),且ρXY存在,则ρXY=()
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
设矩阵,矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵.求矩阵X
已知对于n阶方阵A,存在自然数忌,使得Ak=0.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
利用变换y=f(ex)求微分方程y’’一(2ex+1)y’+e2xy=e3x的通解.
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;(2)计算行列式|A+E|.
随机试题
流量曲线应根据模拟的生产数据进行绘制。()
试述《静静的顿河》的艺术成就。
A.致病性真菌感染B.条件性真菌感染C.真菌变态反应性疾病D.真菌性中毒E.引起肿瘤念珠茵的感染为
葛根总黄酮具有
5个月的婴儿由于呼吸困难半天来院急诊。平时体健,3天前突然流涕,轻咳,今晨热退,呼吸急促,体检:T37.8℃,急性病容,喘息,唇周轻紫,呼吸80次/分,脉搏150次/分,两肺呼气延长,闻及干性啰音患儿呼吸系统主要的病变部位最可能是在
我国甲公司与英国乙公司订立仲裁协议,约定由某地仲裁机构仲裁,但约定的仲裁机构名称不准确。根据相关司法解释,下列哪一选项是正确的?()
在委托时,()的身份确认可不由密码控制。
下列各项中,应当计算缴纳增值税的是()。
被称为“生命中枢”的脑组织是()。(2014年)
Manysmalltownshaveexperiencednewpopulationgrowthfromthecities.ThesenewcomerstoruralAmericabring"bigcity"deman
最新回复
(
0
)