首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
admin
2018-04-15
83
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f’(0)存在,且f’(0)=A.
选项
答案
(1)作辅助函数φ(x)=f(x)一f(a)一[*](x一a),易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)—f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*](0,δ),使得 [*] 故f’
+
(0)存在,且f’
+
(0)=A.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/3Yr4777K
0
考研数学一
相关试题推荐
设f(x)是连续函数,当f(x)是以2为周期的周期函数时,证明函数G(x)=也是以2为周期的周期函数.
=__________
设f(x)=,f[φ(x)]=1一x且φ(x)≥0,求φ(x)及其定义域.
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f"(z)|≤b,其中a,b都是非负常数,c是(0,1)内任一点,证明|f’(c)|≤2a+.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,使.
曲线y=的斜渐近线方程为_________.
设随机变量X1,X2,X3,X4相互独立,且都服从正态分布N(0,σ2),如果二阶行列式Y=,则σ2=________。
若幂级数的收敛半径为R,则级数的收敛半径为________。
若级数发散,则()
设二次型f(x1,x2,x3)=xTAx,其矩阵A满足A3=A,且行列式|A|>0,矩阵A的迹trA<0,则此二次型的规范形为
随机试题
Peoplearespendingmoreoftheirincomeongoodssuchascarsandhousehold________.
Goodhealthisn’tjustabouthealthyeatingandexercise,it’salsoabout(have)________apositiveattitude,andahealthylif
继子女可以继承下列哪些人的遗产?()
期货市场的主要功能有()。
判断新建高速公路路基干湿类型宜采用的指标是()。
我国甲进出口公司于11月15日上午8:50用电报向美国乙公司发出要约,规定承诺须于11月20日前到达甲公司才有效。11月18日,甲公司同时接到乙公司的承诺和撤回承诺的通知。根据《联合国国际货物销售合同公约》的规定,在此情况下,()。
张某盗窃价值15000元的财物后逃到外地,因害怕从重处罚,就向原居住地的公安机关写了一封信,如实地交代了自己的罪行和赃物藏匿地点,张某在投案途中被公安机关逮捕。张某的行为属于()。
爱国主义的时代价值表现在
设总体X服从正态分布N(μ,σ2),X1,X1,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=Xi2依概率收敛于__________。
A、正确B、错误A
最新回复
(
0
)