首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
admin
2018-08-03
82
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B—C
T
A
—1
C是否为正定矩阵,并证明你的结论.
选项
答案
矩阵B—C
T
A
—1
C是正定矩阵.证明:由(1)的结果知D合同于矩阵M=[*],又D为正定矩阵,所以M为正定矩阵.因M为对称矩阵,故B一C
T
A
—1
C为对称矩阵.由M正定,知对m维零向量x=(0,0,…,0)
T
及任意的n维非零向量y=(y
1
,y
2
,…,y
n
)
T
,有[x
T
,y
T
]M[*]=y
T
(B—C
T
A
—1
C)y>0 故对称矩阵B—C
T
A
—1
C为正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2gg4777K
0
考研数学一
相关试题推荐
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ—η=(ea+eb)[f’(η)+f(η)].
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+xy2]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设A=,方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
随机试题
磨擦是机器能量损失的主要原因。
WindowsXP的特点包括()
被称为“髓海”的是
A.外感六淫邪毒B.外来伤害C.情志内伤D.饮食不节E.感受特殊之毒
依据《建设项目竣工环境保护验收管理办法》,进行试生产的建设项目,建设单位应当自试生产之日起( )内,向有审批权的环境保护行政主管部门申请该建设项目竣工环境保护验收。
仅有套期保值者的市场,套期保值很难实现。()
下列关于海啸的表述,不正确的一项是()。
以下均是广西少数民族的民间舞蹈,其中不属于壮族舞蹈的是()。
我国对于基金会的设立采取的原则是()。
Itisstrangethatsomanyoftheimportantmeetingsinpeople’slivestakeplacequitebychance.Icouldhavesat【C1】______in
最新回复
(
0
)