首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
admin
2020-03-16
112
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
, β
2
=t
1
α
2
+t
2
α
3
,…, β
s
=t
1
α
s
+t
2
α
1
,其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
1
(i=1,2,…,s)均为Ax=0的解。 从α
1
,α
2
,…,α
s
是Ax=0的基础解系知s=n—r(A)。 以下分析β
1
,β
2
,…,β
s
线性无关的条件。 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
2
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s—1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*]=t
1
s
+(一1)
s+1
+t
2
s
, 当t
1
s
+(一1)
s+1
+t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠±t
2
,或当s为奇数且t
1
≠一t
2
时,β
1
,β
2
,…,β
s
线性无关,即为Ax=0的一个基础解系。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2KA4777K
0
考研数学二
相关试题推荐
[2014年]求极限.
[2008年]如图1.3.2.1所示,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf′(x)dx等于().
[2011年](I)证明对任意的正整数,都有成立;(Ⅱ)设an=1+一lnn(n=1,2,…),证明数列{an}收敛.
[2012年]证明xln(一1<x<1).
[2006年]曲线y=的水平渐近线方程为_________.
设有曲线y=,过原点作其切线,求由此曲线、切线及x轴围成的平面图形绕x轴旋转一周所得到的旋转体的表面积.
(12年)已知函数f(x)=(I)求a的值;(Ⅱ)若当x→0时,f(x)一a与xk是同阶无穷小,求常数k的值.
(2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
设A=E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设A=E一ξξT,ξ是非零列向量,证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A不可逆.
随机试题
当事人和解的公诉案件诉讼程序,和解协议书应当包括以下哪些内容?()
什么叫落料?
某公司2010年度净利润为4000万元。(1)假设公司执行固定股利支付率政策,股利支付比率为3%。求公司当年应支付的股利总额。(2)假设公司执行剩余股利政策,2011年度计划投资所需资金为3500万元,公司的目标资本结构为:自有资金占60%,借人资金占
糖皮质激素适于治疗:
下列关于经营杠杆系数的叙述中,不正确的有()。
《行政处罚法》第3条第2款规定:“没有法定依据或者不遵守法定程序的,()。”
地球自转一圈的时间是一天,地球半径约为6371千米,毛泽东诗词“坐地日行八万里”是有科学依据的,人可以随着地球自转运动,那么与诗句最吻合的可能是哪个国家的人?
局域网内使用文件和文件夹共享为用户提供了很大的方便,但同时病毒也很容易通过这些共享入侵计算机。
对线性表采用折半查找法,该线性表必须【】。
Whenthepolicearrived,thethieves(run)______away.
最新回复
(
0
)