首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
admin
2020-03-16
84
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
, β
2
=t
1
α
2
+t
2
α
3
,…, β
s
=t
1
α
s
+t
2
α
1
,其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
1
(i=1,2,…,s)均为Ax=0的解。 从α
1
,α
2
,…,α
s
是Ax=0的基础解系知s=n—r(A)。 以下分析β
1
,β
2
,…,β
s
线性无关的条件。 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
2
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s—1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*]=t
1
s
+(一1)
s+1
+t
2
s
, 当t
1
s
+(一1)
s+1
+t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠±t
2
,或当s为奇数且t
1
≠一t
2
时,β
1
,β
2
,…,β
s
线性无关,即为Ax=0的一个基础解系。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2KA4777K
0
考研数学二
相关试题推荐
[2009年2]e-xsinnxdx=__________.
[2014年]设f(x)是周期为4的可导奇函数,且f′(x)=2(x-1),x∈[0,2],则f(7)=_________.
[2018年]设函数z=z(x,y)由方程lnz+ez-1=xy确定,则=________.
[2009年]曲线在点(0,0)处的切线方程为__________.
[2013年]曲线上对应于t=1的点处的法线方程为__________.
[2012年]曲线y=的渐近线条数为().
[2006年]设函数y=f(x)具有二阶导数,且f′(x)>0,f″(x)>0,Δx为自变量x在点x0处的增量,Δy与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则().
(2006年)设数列{χn}满足0<χ1<π,χn+1=sinχn(n=1,2,…).(Ⅰ)证明χn存在,并求该极限;(Ⅱ)
求微分方程y”+a2y=sinx的通解,其中常数a>0.
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求Bx=0的通解。
随机试题
某有限责任公司注册资本为100万元,股东人数为20人,出资额最多的是股东甲,其出资额是9万元。董事会成员为12人,监事会成员为3人。该公司出现下列情形,应当召开临时股东会的是()。
[2004年第061题]“垂花门”是以下哪种民居中的重要组成部分?
在开标后,由评标委员会根据招标文件中规定的资格审查因素、方法和标准,对投标人资格进行的审查是()。
向监理工程师发出索赔意向通知,应在索赔事件发生后()内方为有效。
以下关于会计资本的说法中,不正确的是()。
在沟通前的准备工作中,需要研究收集的客户信息有( )。
满足生产的需要所进行的照明为()
骨巨细胞瘤X线检查可见()。
两个推销鞋子的推销员,来到非洲。结果发现这里的人都是不穿鞋子的。其中一个叫苦连天,这么个地方怎么会卖得出去鞋子呢?于是打包回去了。另一个推销员却喜出望外,他想,如果所有的人都穿鞋子,那么我的市场该有多大啊。请对此谈谈你的理解。
GooglealreadyhasawindowintooursoulsthroughourInternetsearchesanditnowhasinsightintoourailingbodiestoo.The
最新回复
(
0
)