首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E为3阶单位矩阵. (Ⅰ)求方程组Ax=0的一个基础解系; (Ⅱ)求满足AB=E的所有矩阵B.
设A=E为3阶单位矩阵. (Ⅰ)求方程组Ax=0的一个基础解系; (Ⅱ)求满足AB=E的所有矩阵B.
admin
2019-04-17
76
问题
设A=
E为3阶单位矩阵.
(Ⅰ)求方程组Ax=0的一个基础解系;
(Ⅱ)求满足AB=E的所有矩阵B.
选项
答案
(Ⅰ)对方程组的系数矩阵A施以初等行变换 [*] 设x=(x
1
,x
2
,x
3
,x
4
)
T
,选取x
4
为自由未知量,则得方程组的一般解:x
1
=一x
4
,x
2
=2x
4
,x
3
=3x
4
(x
4
任意). 令x
4
=1,则得方程组Ax=0的一个基础解系为 α=(一1,2,3,1)
T
(Ⅱ)对矩阵[A|E]施以初等行变换 [*] 记E=[e
1
,e
2
,e
3
],则方程组Ax=e
1
的同解方程组为 [*] 从而得Ax=e
1
的通解为x=k
1
α+[*],k
1
为任意常数,同理得方程组Ay=e
2
的通解为y=k
2
α+[*],k
2
为任意常数,方程组Az=e
3
的通解为z=k
3
α+[*],k
3
为任意常数,于是得所求矩阵为[*]+[k
1
α,k
2
α,k
3
α]或[*]k
1
,k
2
,k
3
为任意常数.
解析
本题综合考查初等行变换的基本运算、齐次线性方程组的基础解系和非齐次线性方程组的解的结构等基本概念.注意若记矩阵B、E按列分块分别为B= [x y z],E= [e
1
,e
2
,e
3
],则AB=E的第1、2、3列分别是Ax=e
1
,Ay=e
2
,Az=e
3
,因此求矩阵B等价于求解上述3个非齐次线性方程组,而具体求解时采取对矩阵[A|E]施以初等行变换(而不是分别对3个非齐次线性方程组的增广矩阵施以初等行变换)则减少了计算量.
转载请注明原文地址:https://www.kaotiyun.com/show/TDV4777K
0
考研数学二
相关试题推荐
椭球面S2是椭圆绕戈轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕x轴旋转一周而成。(I)求S1及S2的方程;(Ⅱ)求S1与S2之间的立体体积。
求
求微分方程y2dx+(2xy+y2)dy=0的通解.
证明:∫01dx∫01(xy)xydy=∫01xxdx.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
已知极坐标系下的累次积分.其中a>0为常数,则I在直角坐标系下可表示为__________.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程租AX=0的通解是____________。
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设f(x)连续,且求f(0).
(1987年)(1)设f(χ)在[a,b]内可导,且f′(χ)>0,则f(χ)在(a,b)内单调增加.(2)设g(χ)在χ=c处二阶可导,且g′(c)=0,g〞(c)<0,则g(c)为g(χ)的一个极大值.
随机试题
对于细菌性痢疾病人,应按肠道隔离多久()
致死剂量是指
审批委托生产,向委托双方发放《药品委托生产批件》的是药品生产企业质量、生产负责人发生变更的
设f(x)=,则f(x)在点x=1处()。[2013年真题]
供暖管道冲洗完毕后应通水、(),进行试运行和调试。
导游资格证是从业的资格,导游证是从业的许可。()
阅读下面的案例,回答以下题。王俊,男,某中等专业学校学生,该生不适应学校规章制度的约束,在学校和老师、同学都很少沟通,不愿意交流,上课听讲极不专心,有时还会发出怪叫声,故意破坏纪律引起他人的注意,不良的习惯使他慢慢地养成了自卑、散漫的个性,因为学
在国外,很多遗传、传染类疾病属于公民隐私范畴,而在我国,有些机构随意披露公民这些隐私的现象还相当普遍,法律对此还缺乏相关的规定和有效的保护,导致这些隐私被披露后无法获得司法救济。通过这段话,作者想表达的是()。
在某住宅小区的居民中,大多数中老年教员都办了人寿保险,所有买了四居室以上住房的居民都办了财产保险,而所有办了人寿保险的都没办理财产保险。如果上述断定是真的,以下哪项关于该小区居民的断定必定是真的?()Ⅰ.有中老年教员买了四居室以
Thebusinesscycleiscomposedofmanyphasesandoneofthemistheexpansionphase.Thisphaseisatwo-foldone,includingre
最新回复
(
0
)