首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
admin
2019-12-26
69
问题
设4维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时,α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.
选项
答案
【解法1】 记A=(α
1
,α
2
,α
3
,α
4
),则 [*] 于是当a=0或a=10时,α
1
,α
2
,α
3
,α
4
线性相关. 当a=0时,α
1
为向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a=-10时,对A施以初等行变换,有 [*] 由于β
2
,β
3
,β
4
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
1
=β
2
-β
3
-β
4
,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
. 【解法2】 记A=(α
1
,α
2
,α
3
,α
4
),对A施以初等行变换, [*] 当a=0时,r(A)=1,因而α
1
,α
2
,α
3
,α
4
线性相关,此时α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
= 2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a≠0时,再对B施以初等行变换,得 [*] 如果a≠-10,r(C)=4,从而r(A)=4,故α
1
,α
2
,α
3
,α
4
线性无关. 如果a=-10,r(C)=3,从而r(a)=3,故α
1
,α
2
,α
3
,α
4
线性相关,α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2GD4777K
0
考研数学三
相关试题推荐
设α,β都是3维列向量,A=ααT+ββT.证明(1)r(A)≤2.(2)如果α,β线性相关,则r(A)<2.
设A=(α1,α2,…,αn)是实矩阵,证明ATA是对角矩阵α1,α2,…,αn两两正交.
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是().
设f(x)在[0,+∞)上连续,且满足方程求f(t).
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
设(ay-2xy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=______,b=______.
设y1=ex,y2=x2为某二阶齐次线性微分方程的两个特解,则该微分方程为________.
设的值为______.
设f(x)处处可导,则().
随机试题
A.IFNB.IL-8C.IL-2D.IL-4E.CCR5辅助HIV感染T细胞的是
5岁以下幼儿最常见的气管和支气管异物类型多为
东北地区某综合楼,建筑高度为110m,消防水池设置了两路消防供水,火灾情况下能满足消防要求。在建筑顶层的一个专用房间内设置了自动喷水系统的高位水箱、稳压泵和气压罐,在水泵房内设置了一组自动喷水消防水泵,采用“二用二备”,主消防泵采用电动离心泵,备用消防泵采
企业确定固定资产使用寿命时,应当考虑的因素包括()。
如果市场上短期国库券的利率为6%,通货膨胀率为2%,风险收益率为3%,则下列说法中不正确的是()。
第三人可以参加民事诉讼,这是因为他在民事诉讼中,对他人之间的诉讼标的有独立的请求权,或者()。
水:温柔:滋润
“社会必要劳动时间是在现有的社会正常生产条件下,在社会平均劳动熟练程度和劳动强度下制造某种使用价值所需要的劳动时间。”因此,形成商品价值量的劳动的尺度是
函数y=C1ex+C2e-2x+xex满足的一个微分方程是
A、 B、 C、 B
最新回复
(
0
)