首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,且E-AB可逆,则E-BA也可逆.
设A,B均为n阶矩阵,且E-AB可逆,则E-BA也可逆.
admin
2021-02-25
63
问题
设A,B均为n阶矩阵,且E-AB可逆,则E-BA也可逆.
选项
答案
本题考查逆矩阵的概念及性质,抽象矩阵求逆一般主要是AB=E,则A可逆,还可以用A的行列式不为零,则A可逆,也可以构造恒等式使AX=E,则X是A的逆. 证法1:设C为n阶矩阵,使(E-AB)C=E,则C-ABC=E,左乘n阶方阵B,右乘n阶方阵A,有 BCA-BABCA=BA, (E-BA)BCA=BA-E+E, 即 (E-BA)(E+BCA)=E, 因而E-BA可逆. 证法2:利用分块矩阵的运算. [*],两边取行列式得[*],同理 [*] 两边取行列式得 [*] 又由于 [*] 所以|E-AB|=|E-BA|,而E-AB可逆,从而|E-AB|≠0,因而|E-BA|≠0,故E-BA可逆. 证法3:作恒等式,由A-ABA=A-ABA,得 (E-AB)A=A(E-BA), 又由E-AB可逆,所以 A=(E-AB)
-1
A(E-BA). 再由 E=E-BA+BA=E-BA+B(E-AB)
-1
A(E-BA)=[E+B(E-AB)
-1
A](E-BA), 故E-BA可逆,且 (E-BA)
-1
=E+B(E-AB)
-1
A.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/1Z84777K
0
考研数学二
相关试题推荐
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
依题意,如右图所示,D为右半单位圆,且关于x轴[*]
设,已知线性方程组Ax=b存在2个不同的解.(1)求λ,a;(2)求方程组Ax=b的通解.
[2002年]已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵.(1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
[2010年]设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
设三阶矩阵A的特征值为λ1=-1,λ2=,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=________
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为____________.
随机试题
患者,女性,24岁。Graves病患者,甲状腺弥漫性肿大,突眼,近日由于感冒加重突然出现乏力,大汗,心率160次/分,体温39.3℃,血压160/106mmHg,检测血浆T32.79nmol/L,T4457.5nmol/L。复方碘溶液治疗甲状腺
下列支付方式中,属于商业信用的是()
牙周袋形成,尚无明显牙槽骨吸收的病理变化见于牙周炎的
男孩,10岁,因尿少、浮肿、肉眼血尿诊断为急性肾炎入院,入院当天出现头痛、呕吐、惊厥1次,嗜睡,眼眶周围见针刺状出血点,此时最可能的并发症是
根据保险价值在保险合同中是否先予确定进行分类,将保险合同分为()
改扩建项目盈利能力分析的特点是()。
成语“问鼎中原”出自王孙满的一句话:“周虽衰,天命未改,鼎之轻重,未可问也。”下列人物中与成语“问鼎中原”有直接联系的是()。
Thosedaysarelonggonewhenplacingatelephonecallmeantsimplypickingupthereceiverandaskingtheoperatortopatchyou
It’struethat"Asmallchangecanmakeabigdifference"inourlife.Abettertechnicaltermthatcanwell【C1】________thiside
A、FortDearbornwasbuiltin1833intheplacethatwouldbecomeChicago.B、Chicagodidn’tofficiallybecomeatownin1893.C、O
最新回复
(
0
)