首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值是0,1,-1,则下列命题中不正确的是( )
设三阶矩阵A的特征值是0,1,-1,则下列命题中不正确的是( )
admin
2019-07-12
61
问题
设三阶矩阵A的特征值是0,1,-1,则下列命题中不正确的是( )
选项
A、矩阵A-E是不可逆矩阵.
B、矩阵A+E和对角矩阵相似.
C、矩阵A属于1与-1的特征向量相互正交.
D、方程组Ax=0的基础解系由一个向量构成.
答案
C
解析
因为矩阵A的特征值是0,1,-1,所以矩阵A—E的特征值是-1,0,-2.由于λ=0是矩阵A-E的特征值,所以A-E不可逆.故命题A正确.
因为矩阵A+E的特征值是1,2,0,矩阵A+E有三个不同的特征值,所以A+E可以相似对角化.命题B正确.(或由A~A
A+E~A+E而知A+E可相似对角化).
因为矩阵A有三个不同的特征值,知
因此,r(A)=r(A)=2,所以齐次方程组Ax=0的基础解系由n-r(A)=3-2=1个解
向量构成,即命题D正确.
命题C的错误在于,若A是实对称矩阵,则不同特征值的特征向量相互正交,而一般n阶矩阵,不同特征值的特征向量仅仅线性无关并不正交.
转载请注明原文地址:https://www.kaotiyun.com/show/0tJ4777K
0
考研数学三
相关试题推荐
(1998年)设曲线f(x)=xn在点(1,1)处的切线与x轴的交点为(ξn,0),则=_____。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明二次型f在正交变化下的标准形为2y12+y22。
设齐次线性方程组其中a≠0,b≠0,n≥2。试讨论a,b为何值时方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0()
(2003年)设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=Xi2依概率收敛于______。
设二维非零向量α不是二阶方阵A的特征向量.若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
求幂级数
求幂级数的和函数.
设n个n维列向量α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
设un≠0,(n=1,2,…),且=1,则极数【】
随机试题
按照Marchac分类法,下列哪一项不属于颅缝卑闭症
金黄色葡萄球菌分泌的肠毒素是一种
甲、乙、丙共同出资组建一家有限责任公司,注册资本为40万元。其中甲认缴20万元,首期缴纳了3万元;乙以自己的一部小说的著作权出资,作价10万元;丙以一辆汽车出资,作价10万元,根据以上条件,下列说法正确的是:()。
下列各项中,属于通用凭证的是()。
王某因违章驾驶,被公安机关处以15日拘留并处以1000元的罚款。王某不服,向上级公安机关申请复议,复议机关认为罚款过重,将罚款金额改为200元,王某在收到复议决定通知书10日后提起行政诉讼。
行为人超越代理权以被代理人名义订立的合同,相对人可以催告被代理人予以追认。被代理人未作表示的视为()。
下列选项中,通过直接变革宰相制度来加强君主专制的措施有()。①西周实行分封制②西汉设置刺史③唐朝实行三省制④宋朝设立参知政事
某县开展行政执法大检查:①某食品厂生产腐竹时非法添加硼砂被当场查获,县工商局以证据确凿为由吊销该厂营业执照,不再另行举行听证会;②县矿业公司将含镉的工业废渣倾倒入河,造成河水镉浓度超标,县环保局、县水利局分别决定对其罚款10万元和5万元
保持伤口深处不受细菌感染是困难的,即使是高效抗菌素也不能杀死生活在伤口深处的细菌。但是,许多医生却用诸如蔗糖这样的甜性物质包扎伤口而除去了伤口深处的细菌。以下哪项如果为真,最有助于解释用蔗糖杀死伤口深处细菌的原因?
将考生文件夹下的LOBA文件夹中的TUXING文件夹删除。
最新回复
(
0
)