首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 其中a≠0,b≠0,n≥2。试讨论a,b为何值时方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
设齐次线性方程组 其中a≠0,b≠0,n≥2。试讨论a,b为何值时方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
admin
2018-04-18
89
问题
设齐次线性方程组
其中a≠0,b≠0,n≥2。试讨论a,b为何值时方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
选项
答案
方程组的系数行列式 |A|=[*]=[a+(n一1)b](a—b)
n-1
。 ①当a≠b,且a≠(1一n)b时,方程组仅有零解。 ②当a=b时,对系数矩阵A作初等变换,有 [*] 原方程组的同解方程组为x
1
,x
2
,…,x
n
=0,其基础解系为: α
1
=(一1,1,0,…,0)
T
,α
2
=(一1,0,1,…,0)
T
,…,α
n-1
=(一1,0,0,…,1)
T
。 方程组的全部解是: x=c
1
α
1
+c
2
α
2
+…+c
n-1
α
n-1
(c
1
,c
2
,…,c
n-1
为任意常数)。 ③当a=(1一n)b时,对系数矩阵A作初等变换,有 [*] 原方程组的同解方程组为 [*] 其基础解系为β=(1,1,…,1)
T
,方程组的全部解是x=cβ(c为任意常数)。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gpX4777K
0
考研数学三
相关试题推荐
设an为曲线y=xn与y=xn+1(n=1,2,…)所围成区域的面积,记S1=求S1与S2的值.
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明:必存在ξ,η∈(a,b)使得eη-ξ[f(η)+f’(η)]=1.
设数列极限函数f(x)=,则f(x)的定义域I和f(x)的连续区间J分别是()
曲线()
设α1,α2,α3,α4都是3维非零向量,则下列命题中错误的是
设某企业生产一种产品,其成本C(Q)=一16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
已知某种商品的需求量x对价格p的弹性为η=-2p2,而市场对该商品的最大需求量为1(万件).(1)确定需求函数;(2)若价格服从[1,2]上的均匀分布,计算期望收益值.
设a,b均为常数,a>-2,a≠0,求a,b为何值时,使
一商店经销某种商品,每周进货量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润500元,试计算此商店经销
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
随机试题
基金管理人应当自收到核准文件之日起几个月内进行基金募集?()
形成肾内髓部组织间液高渗的物质是
排便时及排便后有马鞍型疼痛特点的是
A.合欢皮B.珍珠C.酸枣仁D.远志E.茯苓善于解郁安神、活血消肿的药物是()。
房地产开发公司对商品住宅的保修期从商品住宅()之日起计算。
若承包商未能在要求的21天内进行竣工试验,而雇主人员着手自行实施试验,那么( )。
饭店治安管理的基本环节包括()。
××市人民政府关于“有关问题”的批复市交通委、市发展改革委、市财政局:你们联合上报的《关于××高速公路收取车辆通行费有关问题的请示》收悉。经认真研究作出如下批复:根据《中华人民共和国公路法》、国务院《收费公路管理条例》及有关文件规定,基本同意××
设随机变量X服从参数为2的指数分布,则随机变量Y=min{X,2)的分布函数().
Whatisanappropriatetitleforthispassage?Whatisawayfortheprospectiveemployeetoshowhis/heragreementwiththebo
最新回复
(
0
)