首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设e<a<b<e2,证明ln2b—ln2a>4(b一a)/e2.
[2004年] 设e<a<b<e2,证明ln2b—ln2a>4(b一a)/e2.
admin
2019-04-05
77
问题
[2004年] 设e<a<b<e
2
,证明ln
2
b—ln
2
a>4(b一a)/e
2
.
选项
答案
因待证的不等式中含有两函数之差,可用拉格朗日中值定理证明,也可用单调性证明,还可用柯西中值定理证之. 证一 对ln
2
x在[a,b]上应用拉格朗日中值定理,得ln
2
b—ln
2
a=[*](b一a),a<ξ<b. 设φ(t)=[*],则φ′(t)=[*],当t>e时,φ′(t)<0,所以φ(t)单调减少,从而φ(ξ)>φ(e
2
),即 [*], 故 ln
2
b—ln
2
a>[*] 证二. 设φ(x)=ln
2
x-4x/e
2
,则φ′(x)=2[*],φ″(x)=2[*],所以当x>e时, φ″(x)<0,故φ′(x)单调减少,从而当e<x<e
2
时,φ′(x)>φ′(e
2
)=4/e
2
—4/e
2
=0,即当 e<x<e
2
时,φ(x)单调增加.因此当e<a<b<e
2
时,cp(b)>φ(a),即 ln
2
b一(4/e
2
)b>ln
2
a一(4/e
2
)以, 故 ln
2
b—ln
2
a>4(6一a)/e
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0PV4777K
0
考研数学二
相关试题推荐
求
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|一f(t)dt当F(x)的最小值为f(A)一a2一1时,求函数f(x)。
位于上半平面向上凹的曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与的乘积成正比,求该曲线方程.
已知I(α)=求积分∫-32I(α)dα.
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
[2009年](I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2002年]已知函数f(x)在(0,+∞)内可导,f(x)>0,f(x)=1,且满足,求f(x).
[2002年]求∫0+∞
[2009年]设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=().
随机试题
DNA代表的物质是
胸外心脏按压的有效性判断是
下列关于处方描述不正确的
可引起先天性婴儿畸型的常见病毒是
A.产生止血作用B.使药物酥脆、便于粉碎和煎出C.增强固涩收敛、明目的作用D.增强收涩敛疮、止血化腐的作用E.使药物质地纯洁细腻,适宜于眼科及外敷用炉甘石锻制的目的是()
某单机容量为20万kW的火力发电站工程,业主与施工单位签订了单价合同,并委托了监理。在施工过程中,施工单位向监理工程师提出如下费用应由业主支付。(1)职工教育经费:因该项目的汽轮机是国外进口的设备,在安装前,需要对安装操作的职工进行培训,培
甲旅行社导游人员王某在华东三日游的带团过程中向游客索要小费200元,后被举报,下列处罚正确的是()。
ThemostfamouspainterinVictoria’shistoryisEmilyCarr.Whenshewasachild,shediscoveredthatwalkinginthewoods【51】m
Bytheyear2100,globaltemperaturesareanticipatedtorisebybetween0.8and3.5degreeCelsius.Thatmaynotseemlikemuch
A、Heshouldbecarefulwhenusinghiscreditcards.B、Heshouldcookbyhimself.C、Heshouldstopspendingmoneyonentertainmen
最新回复
(
0
)