首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-a,a)(a>0)内连续,且f’(0)=2. 证明:对0<x<a,存在0<θ<1,使得∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)-f(-θx)];
设f(x)在(-a,a)(a>0)内连续,且f’(0)=2. 证明:对0<x<a,存在0<θ<1,使得∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)-f(-θx)];
admin
2018-05-21
64
问题
设f(x)在(-a,a)(a>0)内连续,且f’(0)=2.
证明:对0<x<a,存在0<θ<1,使得∫
0
x
f(t)dt+∫
0
-x
f(t)dt=x[f(θx)-f(-θx)];
选项
答案
令F(x)=∫
0
x
f(t)dt+∫
0
-x
f(t)dt,显然F(x)在[0,x]上可导,且F(0)=0,由微分中值定理,存在0<θ<1,使得F(x)=F(x)-F(0)=F’(θx)x,即 ∫
0
x
f(t)dt+∫
0
-x
f(f)dt=x[f(θx-f(-θx)].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0Kr4777K
0
考研数学一
相关试题推荐
设函数f(x)在x0处具有二阶导数,且f’(x0)=0,f"(x0)≠0,证明当f"(x0)>0,f(x)在x0处取得极小值.
曲面z=x2+y2平行于平面2z+2y—z=0的切平面方程为2.
(Ⅰ)设X1,X2,…,Xn是来自概率密度为的总体的样本,θ未知,求的最大似然估计值;(Ⅱ)设X1,X2,…,Xn是来自正态总体N(μ,1)的样本,μ未知,求θ=P{X>2)的最大似然估计值.
若当x→0时,x一(a+bcosx)sinx为x3的高阶无穷小,其中a,b为常数,则(a,b)=________.
设A,B是n阶可逆矩阵,满足AB=A+B,则下面命题中正确的个数是()①|A+B|=|A||B|②(AB)一1=B一1A一1③(A—E)x=0只有零解④B—E不可逆
设A为m×n矩阵,且r(A)==r<n,其中证明方程组AX=b有且仅有n-r+1个线性无关解;
设g(x)二阶可导,且f(x)=(Ⅰ)求常数a,使得f(x)在x=0处连续;(Ⅱ)求f’(x),并讨论f’(x)在x=0处的连续性.
设f(x,y)=,试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
随机试题
玉屏风颗粒功能是
以下关于唇裂、腭裂的描述。错误的是
以下属于大型群众性活动消防安全管理前期筹备阶段的是()。
下列不属于基金分拆和基金分红的区别的是()。
已知某数据库系统中包含3个基本表:商品基本表GOODS(G#,GNAME,PRICE,TYFE,FACT)商场基本表SHOPS(S#,SNAME,MANAG,ADDR)销售基本表SALES(S,G#,QTY)其中,G#,GNAME,PRICE,
在基督教的节日中,每年春分月圆后第一个星期日是()。
“要教给学生一杯水,教师要有一桶水”,这句话表明教师应具有怎样的职业素质?()
人民法院直接受理的刑事案件是()。
奠基者效应是指某生物种群中的少数个体因地理隔绝或其他原因,在与原种群隔离的条件下繁衍生息。虽然后代群体不断扩大,但整个种群的遗传信息均来自最初迁移的少数个体。奠基者效应造成族群遗传多样性较低,对环境适应性较差,容易被自然淘汰。根据上述定义,下列情
Israeliarchaeologistshavediscoveredhumanremainsdatingfrom400,000yearsago,(1)______conventionalwisdomthatHomosapie
最新回复
(
0
)