首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=一1必是矩阵A与B的特征值. 若AB=BA=0,α与β分别是A与B属于特征值λ=一1的特征向量,证明:向量组α,β线性无关.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=一1必是矩阵A与B的特征值. 若AB=BA=0,α与β分别是A与B属于特征值λ=一1的特征向量,证明:向量组α,β线性无关.
admin
2017-07-26
69
问题
A,B均为n阶非零矩阵,且A
2
+A=0,B
2
+B=0,证明:λ=一1必是矩阵A与B的特征值.
若AB=BA=0,α与β分别是A与B属于特征值λ=一1的特征向量,证明:向量组α,β线性无关.
选项
答案
因为(E+A)A=0,A≠0,知齐次方程组(E+A)x=0有非零解,即行列式|E+A|=0.所以λ=一1必是矩阵A的特征值.同理,λ=一1也必是矩阵B的特征值. 类似地,由AB=0,B≠0,知行列式|A|=0,所以λ0必是矩阵A的特征值,同理,λ=0也必是矩阵B的特征值. 对于Aα=一α,用矩阵B左乘等式的两端有BAα=一Bα,又因为BA=0,故Bα=0=0α. 即α是矩阵B属于特征值λ=0的特征向量. 那么,α与β是矩阵B的不同特征值的特征向量,因而α,β线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zrH4777K
0
考研数学三
相关试题推荐
设n阶矩阵A的各列元素之和为2且|A|=4,则它的伴随矩阵A的各列元素之和为_____.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0使得AB=0,则
设函数f(x)在点x。处有连续的二阶导数,证明
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
已知线性方程Ax=β的增广矩阵可化为且方程组有无穷多解,则参数A的取值必须满足().
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
随机试题
某甲状腺功能亢进症患者,体温39.5℃,脉搏150次/分,出现恶心、呕吐、大汗淋漓、嗜睡等症状。初步判断为()。
男性患者,46岁,恶心、食欲缺乏,呕吐3周,尿黄2周,近4d腹胀难忍,尿量减少,神志恍惚1d。腹部移动性浊音阳性。HBsAg(+),凝血酶原时间36s(对照13s),诊断首先考虑为
符合渗出液的是
账务处理系统中所指的期初余额,是指用户启用会计电算化软件当月各科目的()。
根据行政诉讼法律制度的规定,下列选项关于行政诉讼被告的表述中,正确的有()。
1995年全国人民代表大会决定,将牡丹作为我国的国花。
王老师是某学校初二年级的班主任,对班里学习好的同学总是关爱有加,而对其他同学要么就不管不顾,要么就没有一句好话,总是讽刺挖苦。班里的杨明成绩总是在班里排最后几名,班主任对他的印象一直不好。其实杨明除了学习不太好以外,在学校也没有犯过什么大错。并且体育非常好
山东小麦成熟是在()节气。
下列各项不属于行政合同的是()。
轴线原则
最新回复
(
0
)